RESUMEN
BACKGROUND: Disorganization, presenting as impairment in thought, language and goal-directed behavior, is a core multidimensional syndrome of psychotic disorders. This study examined whether scalable computational measures of spoken language, and smartphone usage pattern, could serve as digital biomarkers of clinical disorganization symptoms. METHODS: We examined in a longitudinal cohort of adults with a psychotic disorder, the associations between clinical measures of disorganization and computational measures of 1) spoken language derived from monthly, semi-structured, recorded clinical interviews; and 2) smartphone usage pattern derived via passive sensing technologies over the month prior to the interview. The language features included speech quantity, rate, fluency, and semantic regularity. The smartphone features included data missingness and phone usage during sleep time. The clinical measures consisted of the Positive and Negative Symptom Scale (PANSS) conceptual disorganization, difficulty in abstract thinking, and poor attention, items. Mixed linear regression analyses were used to estimate both fixed and random effects. RESULTS: Greater severity of clinical symptoms of conceptual disorganization was associated with greater verbosity and more disfluent speech. Greater severity of conceptual disorganization was also associated with greater missingness of smartphone data, and greater smartphone usage during sleep time. While the observed associations were significant across the group, there was also significant variation between individuals. CONCLUSIONS: The findings suggest that digital measures of speech disfluency may serve as scalable markers of conceptual disorganization. The findings warrant further investigation into the use of recorded interviews and passive sensing technologies to assist in the characterization and tracking of psychotic illness.
Asunto(s)
Trastornos Psicóticos , Adulto , Humanos , Trastornos Psicóticos/diagnóstico , Lenguaje , Pensamiento , Cognición , HablaRESUMEN
Psychiatric disorders are increasingly understood as dysfunctions of hyper- or hypoconnectivity in distributed brain circuits. A prototypical example is obsessive compulsive disorder (OCD), which has been repeatedly linked to hyper-connectivity of cortico-striatal-thalamo-cortical (CSTC) loops. Deep brain stimulation (DBS) and lesions of CSTC structures have shown promise for treating both OCD and related disorders involving over-expression of automatic/habitual behaviors. Physiologically, we propose that this CSTC hyper-connectivity may be reflected in high synchrony of neural firing between loop structures, which could be measured as coherent oscillations in the local field potential (LFP). Here we report the results from the pilot patient in an Early Feasibility study (https://clinicaltrials.gov/ct2/show/NCT03184454) in which we use the Medtronic Activa PC+ S device to simultaneously record and stimulate in the supplementary motor area (SMA) and ventral capsule/ventral striatum (VC/VS). We hypothesized that frequency-mismatched stimulation should disrupt coherence and reduce compulsive symptoms. The patient reported subjective improvement in OCD symptoms and showed evidence of improved cognitive control with the addition of cortical stimulation, but these changes were not reflected in primary rating scales specific to OCD and depression, or during blinded cortical stimulation. This subjective improvement was correlated with increased SMA and VC/VS coherence in the alpha, beta, and gamma bands, signals which persisted after correcting for stimulation artifacts. We discuss the implications of this research, and propose future directions for research in network modulation in OCD and more broadly across psychiatric disorders.
RESUMEN
The original and corrected figures are shown in the accompanying Publisher Correction.
RESUMEN
Williams syndrome (WS), caused by a heterozygous microdeletion on chromosome 7q11.23, is a neurodevelopmental disorder characterized by hypersociability and neurocognitive abnormalities. Of the deleted genes, general transcription factor IIi (Gtf2i) has been linked to hypersociability in WS, although the underlying mechanisms are poorly understood. We show that selective deletion of Gtf2i in the excitatory neurons of the forebrain caused neuroanatomical defects, fine motor deficits, increased sociability and anxiety. Unexpectedly, 70% of the genes with significantly decreased messenger RNA levels in the mutant mouse cortex are involved in myelination, and mutant mice had reduced mature oligodendrocyte cell numbers, reduced myelin thickness and impaired axonal conductivity. Restoring myelination properties with clemastine or increasing axonal conductivity rescued the behavioral deficits. The frontal cortex from patients with WS similarly showed reduced myelin thickness, mature oligodendrocyte cell numbers and mRNA levels of myelination-related genes. Our study provides molecular and cellular evidence for myelination deficits in WS linked to neuronal deletion of Gtf2i.