Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cancers (Basel) ; 16(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38893070

RESUMEN

BACKGROUND: Breast cancer (BC) remains heterogeneous in terms of prognosis and response to treatment. Metabolic reprogramming is a critical part of oncogenesis and a potential therapeutic target. Glutaminase (GLS), which generates glutamate from glutamine, plays a role in triple-negative breast cancer (TNBC). However, targeting GLS directly may be difficult, as it is essential for normal cell function. This study aimed to determine potential targets in BC associated with glutamine metabolism and evaluate their prognostic value in BC. METHODS: The iNET model was used to identify genes in BC that are associated with GLS using RNA-sequencing data. The prognostic significance of tripartite motif-containing 2 (TRIM2) mRNA was assessed in BC transcriptomic data (n = 16,575), and TRIM2 protein expression was evaluated using immunohistochemistry (n = 749) in patients with early-stage invasive breast cancer with long-term follow-up. The associations between TRIM2 expression and clinicopathological features and patient outcomes were evaluated. RESULTS: Pathway analysis identified TRIM2 expression as an important gene co-expressed with high GLS expression in BC. High TRIM2 mRNA and TRIM2 protein expression were associated with TNBC (p < 0.01). TRIM2 was a predictor of poor distant metastasis-free survival (DMFS) in TNBC (p < 0.01), and this was independent of established prognostic factors (p < 0.05), particularly in those who received chemotherapy (p < 0.05). In addition, TRIM2 was a predictor of shorter DMFS in TNBC treated with chemotherapy (p < 0.01). CONCLUSIONS: This study provides evidence of an association between TRIM2 and poor patient outcomes in TNBC, especially those treated with chemotherapy. The molecular mechanisms and functional behaviour of TRIM2 and the functional link with GLS in BC warrant further exploration using in vitro models.

2.
Pathobiology ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38861938

RESUMEN

PURPOSE: ATF4, a stress-responsive transcription factor that upregulates adaptive genes, is a potential prognostic marker and modulator of glutamine metabolism in breast cancer. However, its exact role remains to be elucidated. METHODS: ATF4 expression was evaluated at genomic and transcriptomic levels using METABRIC (n=1980), GeneMiner (n=4712) and KM-Plotter datasets. Proteomic expression was assessed via immunohistochemistry (n=2225) in the Nottingham Primary Breast Carcinoma Series. ATF4 genomic copy number (CN) variation and mRNA/protein in association with clinicopathological parameters, amino acid transporters (AATs), and patient outcome was investigated. RESULTS: Genomic, transcriptomic, and proteomic overexpression of ATF4 was associated with more aggressive ER-negative tumours. ATF4 mRNA and protein expression were significantly associated with increased expression of glutamine related AATs including SLC1A5 (p<0.01) and SLC7A11 (p<0.02). High ATF4 and SLC1A5 protein expression was significantly associated with shorter breast cancer-specific survival (p<0.01), especially in ER+ tumours (p<0.01), while high ATF4 and SLC7A11 protein expression was associated with shorter survival (p<0.01). CONCLUSION: These findings suggest a complex interplay between ATF4 and AATs in breast cancer biology and underscore the potential role for ATF4 as a prognostic marker in ER+ breast cancer, offering a unique opportunity for risk stratification and personalised treatment strategies.

3.
Cancer Biol Ther ; 25(1): 2291855, 2024 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-38073087

RESUMEN

Breast cancer (BC), characterized by its diverse molecular profiles and clinical outcomes, presents a significant challenge in the development of effective therapeutic strategies. Metabolic reprogramming, a defining characteristic of cancer, has emerged as a promising target for novel therapies. SLC7A11, an amino acid transporter that facilitates cysteine uptake in exchange for glutamate, plays a crucial role in sustaining the altered metabolism of cancer cells. This study delves into the comprehensive analysis of SLC7A11 at the genomic, transcriptomic, and protein levels in extensive BC datasets to elucidate its potential role in different BC subtypes. SLC7A11 gene copy number and mRNA expression were evaluated using the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) cohort (n = 1,980) and Breast Cancer Gene Expression Miner (n = 4,712). SLC7A11 protein was assessed using immunohistochemistry in a large BC cohort (n = 1,981). Additionally, The Cancer Genome Atlas (TCGA) dataset was used to explore SLC7A11 DNA methylation patterns using MethSurv (n = 782) and association of SLC7A11 mRNA expression with immune infiltrates using TIMER (n = 1,100). High SLC7A11 mRNA and SLC7A11 protein expression were significantly associated with high tumor grade (p ≤ .02), indicating a potential role in cancer progression. Interestingly, SLC7A11 copy number gain was observed in HER2+ tumors (p = .01), suggesting a subtype-specific association. In contrast, SLC7A11 mRNA expression was higher in the basal-like/triple-negative (TN; p < .001) and luminal B tumors (p = .02), highlighting its differential expression across BC subtypes. Notably, high SLC7A11 protein expression was predominantly observed in Estrogen Receptor (ER)-negative and Triple Negative (TN) BC, suggesting a role in these aggressive subtypes. Further analysis revealed that SLC7A11 was positively correlated with other amino acid transporters and enzymes associated with glutamine metabolism, implying a coordinated role in metabolic regulation. Additionally, SLC7A11 gene expression was positively associated with neutrophil and macrophage infiltration, suggesting a potential link between SLC7A11 and tumor immunity. Our findings suggest that SLC7A11 plays a significant role in BC metabolism, demonstrating differential expression across subtypes and associations with poor patient outcomes. Further functional studies are warranted to elucidate the precise mechanisms by which SLC7A11 contributes to BC progression and to explore its potential as a therapeutic target.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Neoplasias de la Mama/patología , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Pronóstico , Neoplasias de la Mama Triple Negativas/genética , Genómica , ARN Mensajero , Sistema de Transporte de Aminoácidos y+/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA