Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 454
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int Immunopharmacol ; 140: 112850, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39116488

RESUMEN

OBJECTIVE: Collagen-induced arthritis (CIA) model was induced in C57BL/6 wild-type (wt) and C57BL/6 miR-204/-211 double-knockout (dKO) mice to investigate the role of miR-204/-211 in suppressing splenic inflammation in rheumatoid arthritis (RA). METHODS: Differences of miR-204/-211 and structure-specific recognition protein 1 (SSRP1) in the spleen of DBA/1J wt and CIA mice were detected via PCR and immunohistochemistry. CIA was induced in both C57BL/6 wt and C57BL/6 miR-204/-211 dKO mice, and the onset of CIA and disease severity were statistically analyzed. Immunohistochemistry staining of interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), and SSRP1 in spleen or knee joints was performed and analyzed. In CIA miR-204/-211 dKO mice, AAV-shSSRP1 was intra-articularly injected, with both the AAV-shRNA Ctrl and AAV-shRNA Ctrl CIA groups receiving the same dose of AAV-shRNA. Spleen sections were stained with hematoxylin and eosin (H&E). RESULTS: Compared to wt mouse spleens, aberrant expression of miR-204/-211 and SSRP1 was observed in the spleens of CIA mice. Immunized dKO mice exhibited a higher incidence of CIA onset and a more exacerbated RA disease phenotype, characterized by increased spleen inflammation score and elevated levels of IL-1ß, TNF-α, and SSRP1 expression. AAV-shSSRP1 injection in CIA dKO mice significantly reduced spleen inflammation scores, IL-1ß and TNF-α expression levels, and down-regulated Ki-67 expression compared to CIA dKO mice. CONCLUSION: Knockout of miR-204/-211 exacerbated the onset of CIA in C57BL/6 mice, while miR-204/-211 played a protective role against the progression of splenic inflammatory and proliferative progression in RA by targeting SSRP1.

2.
J Hazard Mater ; 477: 135366, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39088943

RESUMEN

Deoxynivalenol-3-glucoside (D3G), the masked form of the important mycotoxin deoxynivalenol (DON), displays potential toxicity but is difficult to control owing to the lack of rapid detection methods. Herein, an innovative molecularly imprinted polymer (MIP)-based electrochemical sensor was developed for the rapid detection of D3G. MIP, an efficient recognition element for D3G, was electropolymerized using o-phenylenediamine based on a surface functional monomer-directing strategy for the first time. CeO2, which contains both Ce3+ and Ce4+ oxidation states, was introduced as a nanozyme to catalyze H2O2 reduction, while Mn doping generated more oxygen vacancies and considerably improved the catalytic activity. Mn-CeO2 also served as a promising substrate material because of its large surface area and excellent conductivity. Under optimal conditions, a good linear relationship was observed for D3G detection over the concentration range of 0.01-50 ng/mL. The proposed sensor could detect D3G down to 0.003 ng/mL with excellent selectivity, even distinguishing its precursor DON in complex samples. The sensor exhibited acceptable stability with high reproducibility and accuracy, and could successfully determine D3G in grain samples. To the best of our knowledge, this is the first electrochemical sensing platform for rapid D3G detection that can easily be expanded to other masked mycotoxins.


Asunto(s)
Cerio , Técnicas Electroquímicas , Manganeso , Tricotecenos , Tricotecenos/análisis , Tricotecenos/química , Cerio/química , Manganeso/química , Polímeros Impresos Molecularmente/química , Impresión Molecular , Polímeros/química , Reproducibilidad de los Resultados , Grano Comestible/química , Límite de Detección , Glucósidos/química , Glucósidos/análisis , Contaminación de Alimentos/análisis , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/análisis
3.
Small ; : e2404637, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39151161

RESUMEN

In deserts, sedimentation from frequent dust activities on solar cells poses a substantial technical challenge, reducing efficiency and necessitating advanced cost-inefficient cleaning mechanisms. Herein, a novel sandfish scale-inspired self-healing fluorinated copolymer-based triboelectric layer is directly incorporated on top of the polysilicon solar cell for sustained hybrid energy harvesting. The transparent biomimetic layer, with distinctive saw-tooth microstructured morphology, exhibits ultra-low sand adhesion and high abrasion-resistant properties, inhibits sedimentation deposition on solar cells, and concurrently harvests kinetic energy from wind-driven sand particles through triboelectric nanogenerator (TENG). The film exhibits a low friction coefficient (0.149), minimal sand adhesion force (27 nN), and a small wear area (327 µm2). In addition, over 2 months, a solar cell with the sandfish scale-inspired structure demonstrates only a 16% decline in maximum power output compared to the bare solar cell, which experiences a 60% decline. Further, the sandfish scale-based TENG device's electrical output is fully restored to its original value after a 6-h self-healing cycle and maintains consistent stable outputs. These results highlight the exceptional advantages of employing biomimetic self-healing materials as robust triboelectric layers, showcasing sustained device stability and durability for prolonged use in harsh desert environments, ultimately contributing to a low cost-of-electricity generation paradigm.

4.
Biomater Res ; 28: 0033, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39040621

RESUMEN

Bacterial keratitis is a serious ocular infection that can impair vision or even cause blindness. The clinical use of antibiotics is limited due to their low bioavailability and drug resistance. Hence, there is a need to develop a novel drug delivery system for this infectious disease. In this study, erythromycin (EM) was encapsulated into a bifunctional polyhedral oligomeric silsesquioxane (BPOSS) with the backbone of the poly-PEG/PPG urethane (BPEP) hydrogel with the aim of improving the drug efficiency in treating bacterial keratitis. A comprehensive characterization of the BPEP hydrogel was performed, and its biocompatibility was assessed. Furthermore, we carried out the evaluation of the antimicrobial effect of the BPEP-EM hydrogel in S. aureus keratitis using in vivo mouse model. The BPEP hydrogel exhibited self-assembling and thermogelling properties, which assisted the drug loading of drug EM and improved its water solubility. Furthermore, the BPEP hydrogel could effectively bind with mucin on the ocular surface, thereby markedly prolonging the ocular residence time of EM. In vivo testing confirmed that the BPEP-EM hydrogel exerted a potent therapeutic action in the mouse model of bacterial keratitis. In addition, the hydrogel also exhibited an excellent biocompatibility. Our findings demonstrate that the BPEP-EM hydrogel showed a superior therapeutic effect in bacterial keratitis and demonstrated its potential as an ophthalmic formulation.

5.
Rev Sci Instrum ; 95(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39041904

RESUMEN

This paper proposes a two-dimensional calibration method for resolving the nano-positioner pedestal micro-deformation crosstalk errors during the auction process. This refinement aims to enhance the nano-positioner's accuracy and reduce coupling crosstalk errors. The reaction force exerted by the piezoelectric actuator can cause micro-deformation in the nano-positioner sensor pedestal, causing substantial errors in uncalibrated closed-loop control. This phenomenon has been previously overlooked. According to the two-degree of freedom parallel-symmetric decoupled nano-positioner deformation characteristics, a two-dimensional calibration matrix is proposed to suppress the crosstalk between two axes caused by the micro-deformation of the sensor pedestal. Experimental results show that the calibrated closed-loop system reduces X-axis and Y-axis coupling crosstalk errors to 1/67th and 1/18th of the uncalibrated closed-loop system, respectively, concurrently enhancing the positioning accuracy to 11.8 and 17 times that of the uncalibrated closed-loop system. The calibrated closed-loop feedback control method proposed in this paper proves effective for all compact nano-positioners with pedestal deformation issues. This research provides a crucial reference for the design of nano-positioners, offering insights into enhancing their accuracy and mitigating crosstalk issues.

6.
J Sci Food Agric ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030928

RESUMEN

BACKGROUND: Gray blight (GB) is a significant disease of tea leaves, posing a severe threat to both the yield and quality. In this study, the process of leaf infection by a pathogenic isolate of the GB disease (DDZ-6) was simulated. Hyperspectral images of normal leaves, infected leaves without symptoms, and infected leaves with mild and moderate symptoms were collected. Combining convolution neural network (CNN), long short-term memory (LSTM), and support vector machine (SVM) algorithms, the early detection model of GB disease, and the rapid screening model of resistant varieties were established. The generality of this method was verified by collecting datasets under field conditions. RESULTS: The visible red-light band demonstrated a pronounced responsiveness to GB disease, with three sensitive bands identified through rigorous screening processes utilizing uninformative variable elimination (UVE), competitive adaptive reweighted sampling (CARS), and the successive projections algorithm (SPA). The 693, 727, and 766 nm bands emerged as highly sensitive indicators of GB. Under ideal conditions, the CARS-LSTM model excelled in early detection of GB, achieving an accuracy of 92.6%. However, under field conditions, the combination of 693 and 727 nm bands integrated with a CNN provided the most effective early detection model, attaining an accuracy of 87.8%. For screening tea varieties resistant to GB, the SPA-LSTM model excelled, achieving an accuracy of 82.9%. CONCLUSION: This study provides a core algorithm for a GB disease instrument with detection capabilities, which is of great importance for the early prevention of GB disease in tea plantations. © 2024 Society of Chemical Industry.

7.
Plant Physiol Biochem ; 214: 108938, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39067103

RESUMEN

Drought stress is a major limit on the maize growth and productivity, and understanding the drought response mechanism is one of the important ways to improve drought resistance in maize. However, more drought-related genes and their regulated mechanisms are still to be reported. Here, we identified a novel NAC transcription factor ZmNAC55 in Zea mays and comprehensively investigated the functions of ZmNAC55 under drought stress. ZmNAC55 belonged to the NAP subfamily. ZmNAC55 had a conserved NAC domain in the N-terminal region and a divergent TAR region in the C-terminal region. ZmNAC55 was a nuclear protein, and ZmNAC55 and its TAR region had the transcriptional activation activity. Furthermore, the expression level of ZmNAC55 in leaves could be highly induced by drought stress. ZmNAC55 overexpression in Arabidopsis conferred the drought-sensitive phenotype with higher water loss, lower survival rate, higher membrane ion leakage, and higher expression levels of some drought-related genes. Meanwhile, ZmNAC55 underexpression in maize enhanced drought tolerance with lower water loss, higher survival rate, lower membrane ion leakage and lower expression levels of some drought-related genes. In addition, ZmNAC55 appeared to be very key in regulating ROS production under drought stress. Moreover, ZmNAC55 could activate ZmHOP3 expression by binding to its promoter. A novel working model of ZmNAC55 under drought stress could be found in maize. Taken together, the NAC transcription factor ZmNAC55 could negatively regulate drought stress via increasing ZmHOP3 expression in maize. ZmNAC55 is a promising candidate for improving drought resistance in maize.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Factores de Transcripción , Zea mays , Zea mays/genética , Zea mays/metabolismo , Zea mays/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Sequías , Plantas Modificadas Genéticamente , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiología , Estrés Fisiológico/genética , Especies Reactivas de Oxígeno/metabolismo
8.
J Nanobiotechnology ; 22(1): 389, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956645

RESUMEN

BACKGROUND: Nanotechnology holds revolutionary potential in the field of agriculture, with zinc oxide nanoparticles (ZnO NPs) demonstrating advantages in promoting crop growth. Enhanced photosynthetic efficiency is closely linked to improved vigor and superior quality in tea plants, complemented by the beneficial role of phyllosphere microorganisms in maintaining plant health. However, the effects of ZnO NPs on the photosynthesis of tea plants, the sprouting of new shoots, and the community of phyllosphere microorganisms have not been fully investigated. RESULTS: This study investigated the photosynthetic physiological parameters of tea plants under the influence of ZnO NPs, the content of key photosynthetic enzymes such as RubisCO, chlorophyll content, chlorophyll fluorescence parameters, transcriptomic and extensive targeted metabolomic profiles of leaves and new shoots, mineral element composition in these tissues, and the epiphytic and endophytic microbial communities within the phyllosphere. The results indicated that ZnO NPs could enhance the photosynthesis of tea plants, upregulate the expression of some genes related to photosynthesis, increase the accumulation of photosynthetic products, promote the development of new shoots, and alter the content of various mineral elements in the leaves and new shoots of tea plants. Furthermore, the application of ZnO NPs was observed to favorably influence the microbial community structure within the phyllosphere of tea plants. This shift in microbial community dynamics suggests a potential for ZnO NPs to contribute to plant health and productivity by modulating the phyllosphere microbiome. CONCLUSION: This study demonstrates that ZnO NPs have a positive impact on the photosynthesis of tea plants, the sprouting of new shoots, and the community of phyllosphere microorganisms, which can improve the growth condition of tea plants. These findings provide new scientific evidence for the application of ZnO NPs in sustainable agricultural development and contribute to advancing research in nanobiotechnology aimed at enhancing crop yield and quality.


Asunto(s)
Camellia sinensis , Nanopartículas del Metal , Microbiota , Fotosíntesis , Hojas de la Planta , Brotes de la Planta , Óxido de Zinc , Óxido de Zinc/farmacología , Óxido de Zinc/química , Fotosíntesis/efectos de los fármacos , Camellia sinensis/microbiología , Brotes de la Planta/crecimiento & desarrollo , Microbiota/efectos de los fármacos , Hojas de la Planta/microbiología , Nanopartículas del Metal/química , Clorofila/metabolismo , Nanopartículas/química
9.
J Ethnopharmacol ; 334: 118588, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39029543

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Sepsis-associated encephalopathy (SAE) is a common and serious complication during the acute phase of and after recovery from sepsis that seriously affects the quality of life of patients. Traditional Chinese medicine (TCM) has been widely used in modern medicine for neurological anomalies and has become a therapeutic tool for the treatment of SAE due to its multitargeting effects and low toxicity and side effects. AIMS OF THE STUDY: This review provides insights into the pathogenesis and treatments of SAE, focusing on the clinical and experimental impacts of TCM formulations and their single components. METHODS: Several known databases such as PubMed, Web of Science, Google Scholar, China National Knowledge Infrastructure (CNKI), and others were extensively explored with keywords and phrases such as "sepsis-associated encephalopathy", "traditional Chinese medicine", "herbs", "SAE", "sepsis", "cerebral" or other relevant terms to obtain literature between 2018 and 2024. RESULTS: Extensive evidence indicated that TCM could decrease mortality and normalize neurological function in patients with sepsis; these effects might be associated with factors such as reduced oxidative stress and downregulated expression of inflammatory factors. CONCLUSIONS: TCM shows notable efficacy in treating SAE, warranting deeper mechanistic studies to optimize its clinical application.


Asunto(s)
Medicamentos Herbarios Chinos , Medicina Tradicional China , Encefalopatía Asociada a la Sepsis , Humanos , Encefalopatía Asociada a la Sepsis/tratamiento farmacológico , Medicina Tradicional China/métodos , Medicamentos Herbarios Chinos/uso terapéutico , Animales , Sepsis/tratamiento farmacológico , Sepsis/complicaciones
10.
Ultrasound Med Biol ; 50(9): 1426-1435, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38876913

RESUMEN

OBJECTIVES: Ultrasound imaging (USI) is the gold standard in the clinical diagnosis of thyroid diseases. Compared with two-dimensional (2D) USI, three-dimensional (3D) USI could provide more structural information. However, the unstable pressure generated by the hand-hold ultrasound probe scanning can cause tissue deformation, especially in soft tissues such as the thyroid. The deformation is manifested as tissue structure being compressed in 2D USI, which results in structural discontinuity in 3D USI. Furthermore, multiple scans apply pressure in different directions to the tissue, which will cause relative displacement between the 3D images obtained from multiple thyroid scans. METHODS: In this work, we proposed a framework to minimize the influence of the variation of pressure in thyroid 3D USI. To correct pressure artifacts in a single scanning sequence, an adaptive method to smooth the position of the 2D ultrasound (US) image sequence is adopted before performing volumetric reconstruction. To build a whole 3D US image including both sides of the thyroid gland, an iterative closest point (ICP) based registration pipeline is adopted to eliminate the relative displacement caused by different pressure directions. RESULTS: Our proposed method was validated by in vivo experiments, including healthy volunteers and volunteers with thyroid nodules at different grading levels. CONCLUSIONS: The thyroid gland and nodule are rendered intelligently in the whole scanning region to facilitate the observation of 3D USI results by the doctor. This work might make a positive contribution to the clinical diagnosis of diseases of the thyroid or other soft tissues.


Asunto(s)
Imagenología Tridimensional , Enfermedades de la Tiroides , Glándula Tiroides , Ultrasonografía , Humanos , Ultrasonografía/métodos , Glándula Tiroides/diagnóstico por imagen , Imagenología Tridimensional/métodos , Enfermedades de la Tiroides/diagnóstico por imagen , Femenino , Adulto , Masculino , Nódulo Tiroideo/diagnóstico por imagen
11.
Nanomicro Lett ; 16(1): 218, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884868

RESUMEN

Microgels prepared from natural or synthetic hydrogel materials have aroused extensive attention as multifunctional cells or drug carriers, that are promising for tissue engineering and regenerative medicine. Microgels can also be aggregated into microporous scaffolds, promoting cell infiltration and proliferation for tissue repair. This review gives an overview of recent developments in the fabrication techniques and applications of microgels. A series of conventional and novel strategies including emulsification, microfluidic, lithography, electrospray, centrifugation, gas-shearing, three-dimensional bioprinting, etc. are discussed in depth. The characteristics and applications of microgels and microgel-based scaffolds for cell culture and delivery are elaborated with an emphasis on the advantages of these carriers in cell therapy. Additionally, we expound on the ongoing and foreseeable applications and current limitations of microgels and their aggregate in the field of biomedical engineering. Through stimulating innovative ideas, the present review paves new avenues for expanding the application of microgels in cell delivery techniques.

13.
Sci Bull (Beijing) ; 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38945747

RESUMEN

Water has been detected in lunar regolith, with multiple sources identified through the analysis of individual grains. However, the primary origin of water in the bulk lunar regolith remains uncertain. This study presents spectroscopic analyses of water content in sealed Chang'e-5 samples. These samples were sieved into various size fractions (bulk, <45 µm, and 45-355 µm) inside a glovebox filled with high-purity nitrogen. Results indicate a higher water content in the fine fractions (∼87 ± 11.9 ppm) than in bulk soil (∼37 ± 4.8 ppm) and coarse fractions (∼11 ± 1.5 ppm). This suggests that water is predominantly concentrated in the outermost rims of the regolith grains, and thus exhibits dependence on the surface volume ratio (also known as surface correlation), indicating solar wind is a primary source of lunar surface water. Laboratory, in-situ, and orbital results bridge sample analysis and remote sensing, offering a cohesive understanding of lunar surface water characteristics as represented by Chang'e-5. The discovery provides statistical evidence for the origin of water in lunar soil and can be considered representative of the lunar surface conditions. The water enrichment of the finest fraction suggests the feasibility of employing size sorting of lunar soils as a potential technological approach for water resource extraction in future lunar research stations.

14.
Heliyon ; 10(11): e32085, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38868034

RESUMEN

(1) Studying the dynamic correlation between land use and the eco-environment in the Dianchi Basin is important for improving the basin's spatial layout and enhancing ecological development and conservation; (2) Through dynamic analysis and comprehensive evaluation of land use, the introduction of ecological and environmental quality index, and the use of FLUS models, the impacts on eco-environments in the Dianchi Basin for the recent 20 years were analyzed; (3) The past two decades witnessed a constant increase in the construction land in the Dianchi Basin and a decline in the farmland at an average annual rate of 0.93 %; The utilization level of land in the Dianchi Basin presented a negative correlation with the quality of the area's eco-environment, which reduces first and then increases; When natural production becomes a priority, both the construction land and farmland have witnessed growth. However, when ecological protection becomes a priority, it is projected that by 2035, the Dianchi Basin will achieve its highest eco-environmental quality index; (4) Studying how the change of land use types affects eco-environment is crucial for optimizing the current allocation of land resources and promoting sustainable development in the basin.

15.
Plant Genome ; : e20478, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38863371

RESUMEN

The small heat shock proteins (sHSPs) are important components in plant growth and development, and stress response. However, a systematical understanding of the sHSP family is yet to be reported in five diploid Gossypium species. In this study, 34 GlsHSPs, 36 GrsHSPs, 37 GtsHSPs, 37 GasHSPs, and 38 GhesHSPs were identified in Gossypium longicalyx, Gossypium raimondii, Gossypium turneri, Gossypium arboreum, and Gossypium herbaceum, respectively. These sHSP members can be clustered into 10 subfamilies. Different subfamilies had different member numbers, motif distributions, gene structures, gene duplication events, gene loss numbers, and cis-regulatory elements. Besides, the paleohexaploidization event in cotton ancestor led to expanding the sHSP members and it was also inherited by five diploid Gossypium species. After the cotton ancestor divergence, the sHSP members had the relatively conserved evolution in five diploid Gossypium species. The comprehensive evolutionary history of the sHSP family was revealed in five diploid Gossypium species. Furthermore, several GasHSPs and GhesHSPs were important candidates in plant growth and development, and stress response. These current findings can provide valuable information for the molecular evolution and further functional research of the sHSP family in cotton.

16.
ACS Omega ; 9(23): 24674-24684, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38882082

RESUMEN

The blast furnaces of Anshan Iron and Steel have completed large-scale modernization, and a large amount of information technology has been popularized and applied to the process of blast furnaces. This paper takes the Anshan Iron and Steel blast furnace group as the research background. Based on big data and industrial Internet technology, combining the smelting process mechanism of blast furnace production and using artificial intelligence, cloud analysis, and other technologies, the data management platform was used to effectively integrate the data of each process of the blast furnace and design the data asset catalogue. The big data application platform for the intensive control of the blast furnace was established. The data were in multidimensional in-depth mining, and the intelligent application model of the blast furnace was established. The visual intelligent monitoring of the safe production and operation of the blast furnace was realized, and the production operation of the blast furnace was guided. The overall information and intelligent level of production operation and management of the blast furnace have been improved.

17.
Langmuir ; 40(24): 12681-12688, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38839051

RESUMEN

Photocatalytic conversion of CO2 to hydrocarbon fuel is a potential strategy to solve energy shortage and mitigate the greenhouse effect. Here, direct Z-scheme heterojunction photocatalysts (In2O3/Bi2S3) without an electron mediator are prepared by a simple hydrolysis method. The In2O3/Bi2S3 composite photocatalysts show greatly boosted photoactivity on CO2 conversion to CO compared with the pristine In2O3 and Bi2S3. The highest CO evolution rate of 2.67 µmol·g-1·h-1 is achieved by In2O3/Bi2S3-3, without any sacrificial agent or cocatalyst, which is about 3.87 times that of In2O3 (0.69 µmol·g-1·h-1). The boosted photocatalytic performance of In2O3/Bi2S3 composite catalysts can be ascribed to the establishment of a Z-scheme heterojunction, improving the photoabsorption and facilitating charge separation and transfer. This study provides a reference for designing and fabricating high-efficiency Z-scheme heterojunction photocatalysts for photocatalytic CO2 reduction.

18.
Int J Mol Sci ; 25(11)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38892074

RESUMEN

Global warming poses a threat to plant survival, impacting growth and agricultural yield. Protein turnover, a critical regulatory mechanism balancing protein synthesis and degradation, is crucial for the cellular response to environmental changes. We investigated the effects of elevated temperature on proteome dynamics in Arabidopsis thaliana seedlings using 15N-stable isotope labeling and ultra-performance liquid chromatography-high resolution mass spectrometry, coupled with the ProteinTurnover algorithm. Analyzing different cellular fractions from plants grown under 22 °C and 30 °C growth conditions, we found significant changes in the turnover rates of 571 proteins, with a median 1.4-fold increase, indicating accelerated protein dynamics under thermal stress. Notably, soluble root fraction proteins exhibited smaller turnover changes, suggesting tissue-specific adaptations. Significant turnover alterations occurred with redox signaling, stress response, protein folding, secondary metabolism, and photorespiration, indicating complex responses enhancing plant thermal resilience. Conversely, proteins involved in carbohydrate metabolism and mitochondrial ATP synthesis showed minimal changes, highlighting their stability. This analysis highlights the intricate balance between proteome stability and adaptability, advancing our understanding of plant responses to heat stress and supporting the development of improved thermotolerant crops.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Marcaje Isotópico , Isótopos de Nitrógeno , Proteoma , Plantones , Arabidopsis/metabolismo , Plantones/metabolismo , Plantones/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Marcaje Isotópico/métodos , Isótopos de Nitrógeno/metabolismo , Proteoma/metabolismo , Algoritmos , Proteómica/métodos , Temperatura , Respuesta al Choque Térmico
19.
Invest New Drugs ; 42(4): 418-427, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38916794

RESUMEN

mTORC1/2 dual inhibitors may be more effective than mTORC1 inhibitor rapamycin. However, their metabolic impacts on colon cancer cells remain unexplored. We conducted a comparative analysis of the anti-proliferative effects of rapamycin and the novel OSI-027 in colon cancer cells HCT-116, evaluating their metabolic influences through ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS/MS). Our results demonstrate that OSI-027 more effectively inhibits colon cancer cell proliferation than rapamycin. Additionally, we identified nearly 600 metabolites from the spectra, revealing significant differences in metabolic patterns between cells treated with OSI-027 and rapamycin. Through VIP value screening, we pinpointed crucial metabolites contributing to these distinctions. For inhibiting glycolysis and reducing glucose consumption, OSI-027 was likely to be more potent than rapamycin. For amino acids metabolism, although OSI-027 has a broad effect as rapamycin, their effects in degrees were not exactly the same. These findings address the knowledge gap regarding mTORC1/2 dual inhibitors and lay a foundation for their further development and research.


Asunto(s)
Neoplasias del Colon , Imidazoles , Diana Mecanicista del Complejo 1 de la Rapamicina , Diana Mecanicista del Complejo 2 de la Rapamicina , Metabolómica , Sirolimus , Triazinas , Humanos , Proliferación Celular/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Células HCT116 , Imidazoles/farmacología , Imidazoles/uso terapéutico , Cromatografía Líquida con Espectrometría de Masas , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/antagonistas & inhibidores , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Metabolómica/métodos , Sirolimus/farmacología , Sirolimus/uso terapéutico , Espectrometría de Masas en Tándem , Triazinas/farmacología , Triazinas/uso terapéutico
20.
Ultrason Imaging ; 46(4-5): 220-232, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38903053

RESUMEN

Three-dimensional (3D) ultrasound imaging can be accomplished by reconstructing a sequence of two-dimensional (2D) ultrasound images. However, 2D ultrasound images usually suffer from low resolution in the elevation direction, thereby impacting the accuracy of 3D reconstructed results. The lateral resolution of 2D ultrasound is known to significantly exceed the elevation resolution. By combining scanning sequences acquired from orthogonal directions, the effects of poor elevation resolution can be mitigated through a composite reconstructing process. Moreover, capturing ultrasound images from multiple perspectives necessitates a precise probe positioning method with a wide angle of coverage. Optical tracking is popularly used for probe positioning for its high accuracy and environment-robustness. In this paper, a novel large-angle accurate optical positioning method is used for enhancing resolution in 3D ultrasound imaging through orthogonal-view scanning and composite reconstruction. Experiments on two phantoms proved that our method could significantly improve reconstruction accuracy in the elevation direction of the probe compared with single-angle parallel scanning. The results indicate that our method holds the potential to improve current 3D ultrasound imaging techniques.


Asunto(s)
Imagenología Tridimensional , Fantasmas de Imagen , Ultrasonografía , Imagenología Tridimensional/métodos , Ultrasonografía/métodos , Aumento de la Imagen/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA