Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chin Med J (Engl) ; 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38809056

RESUMEN

ABSTRACT: Triggering receptor expressed on myeloid cells-1 (TREM-1) is a member of the immunoglobulin superfamily. As an amplifier of the inflammatory response, TREM-1 is mainly involved in the production of inflammatory mediators and the regulation of cell survival. TREM-1 has been studied in infectious diseases and more recently in non-infectious disorders. More and more studies have shown that TREM-1 plays an important pathogenic role in kidney diseases. There is evidence that TREM-1 can not only be used as a biomarker for diagnosis of disease but also as a potential therapeutic target to guide the development of novel therapeutic agents for kidney disease. This review summarized molecular biology of TREM-1 and its signaling pathways as well as immune response in the progress of acute kidney injury, renal fibrosis, diabetic nephropathy, immune nephropathy, and renal cell carcinoma.

2.
Chin Med J (Engl) ; 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37962205

RESUMEN

BACKGROUND: Homoharringtonine (HHT) is an effective anti-inflammatory, anti-viral, and anti-tumor protein synthesis inhibitor that has been applied clinically. Here, we explored the therapeutic effects of HHT in a mouse heart transplant model. METHODS: Healthy C57BL/6 mice were used to observe the toxicity of HHT in the liver, kidney, and hematology. A mouse heart transplantation model was constructed, and the potential mechanism of HHT prolonging allograft survival was evaluated using Kaplan-Meier analysis, immunostaining, and bulk RNA sequencing analysis. The HHT-T cell crosstalk was modeled ex vivo to further verify the molecular mechanism of HHT-induced regulatory T cells (Tregs) differentiation. RESULTS: HHT inhibited the activation and proliferation of T cells and promoted their apoptosis ex vivo. Treatment of 0.5 mg/kg HHT for 10 days significantly prolonged the mean graft survival time of the allografts from 7 days to 48 days (P <0.001) without non-immune toxicity. The allografts had long-term survival after continuous HHT treatment for 28 days. HHT significantly reduced lymphocyte infiltration in the graft, and interferon-γ-secreting CD4+ and CD8+ T cells in the spleen (P <0.01). HHT significantly increased the number of peripheral Tregs (about 20%, P <0.001) and serum interleukin (IL)-10 levels. HHT downregulated the expression of T cell receptor (TCR) signaling pathway-related genes (CD4, H2-Eb1, TRAT1, and CD74) and upregulated the expression of IL-10 and transforming growth factor (TGF)-ß pathway-related genes and Treg signature genes (CTLA4, Foxp3, CD74, and ICOS). HHT increased CD4+ Foxp3+ cells and Foxp3 expression ex vivo, and it enhanced the inhibitory function of inducible Tregs. CONCLUSIONS: HHT promotes Treg cell differentiation and enhances Treg suppressive function by attenuating the TCR signaling pathway and upregulating the expression of Treg signature genes and IL-10 levels, thereby promoting mouse heart allograft acceptance. These findings may have therapeutic implications for organ transplant recipients, particularly those with viral infections and malignancies, which require a more suitable anti-rejection medication.

3.
Front Immunol ; 13: 979983, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36059468

RESUMEN

Background: Patients after kidney transplantation need to take long-term immunosuppressive and other drugs. Some of these drug side effects are easily confused with the symptoms of Fanconi syndrome, resulting in misdiagnosis and missed diagnosis, and causing serious consequences to patients. Therefore, improving awareness, early diagnosis and treatment of Fanconi syndrome after kidney transplantation is critical. Methods: This retrospective study analyzed 1728 cases of allogeneic kidney transplant patients admitted to the Second Xiangya Hospital of Central South University from July 2016 to January 2021. Two patients with Fanconi syndrome secondary to drugs, adefovir dipivoxil (ADV) and tacrolimus, were screened. We summarized the diagnostic process, clinical data, and prognosis. Results: The onset of Fanconi syndrome secondary to ADV after renal transplantation was insidious, and the condition developed after long-term medication (>10 years). It mainly manifested as bone pain, osteomalacia, and scoliosis in the late stage and was accompanied by obvious proximal renal tubular damage (severe hypophosphatemia, hypokalemia, hypocalcemia, hypouricemia, glycosuria, protein urine, acidosis, etc.) and renal function damage (increased creatinine and azotemia). The pathological findings included mitochondrial swelling and deformity in renal tubular epithelial cells. The above symptoms and signs were relieved after drug withdrawal, but the scoliosis was difficult to rectify. Fanconi syndrome secondary to tacrolimus has a single manifestation, increased creatinine, which can be easily confused with tacrolimus nephrotoxicity. However, it is often ineffective to reduce the dose of tacrolomus, and proximal renal failure can be found in the later stage of disease development. There was no abnormality in the bone metabolism index and imageological examination findings. The creatinine level decreased rapidly, the proximal renal tubule function returned to normal, and no severe electrolyte imbalance or urinary component loss occurred when the immunosuppression was changed from tacrolimus to cyclosporine A. Conclusions: For the first time, drug-induced Fanconi syndrome after kidney transplantation was reported. These results confirmed that the long-term use of ADV or tacrolimus after kidney transplantation may have serious consequences, some of which are irreversible. Greater understanding of Fanconi syndrome after kidney transplantation is necessary in order to avoid incorrect and missed diagnosis.


Asunto(s)
Anemia de Fanconi , Síndrome de Fanconi , Trasplante de Riñón , Insuficiencia Renal , Escoliosis , Aloinjertos , Antivirales/efectos adversos , Creatinina , Anemia de Fanconi/patología , Síndrome de Fanconi/inducido químicamente , Síndrome de Fanconi/diagnóstico , Síndrome de Fanconi/terapia , Humanos , Trasplante de Riñón/efectos adversos , Túbulos Renales Proximales/patología , Estudios Retrospectivos , Escoliosis/inducido químicamente , Escoliosis/patología , Tacrolimus/efectos adversos
4.
Sci Adv ; 6(4): eaay9819, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-32010791

RESUMEN

Disassembly of intercellular junctions is a hallmark of epithelial-mesenchymal transition (EMT). However, how the junctions disassemble remains largely unknown. Here, we report that E3 ubiquitin ligase Smurf1 targets p120-catenin, a core component of adherens junction (AJ) complex, for monoubiquitination during transforming growth factor ß (TGFß)-induced EMT, thereby leading to AJ dissociation. Upon TGFß treatment, activated extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylates T900 of p120-catenin to promote its interaction with Smurf1 and subsequent monoubiquitination. Inhibition of T900 phosphorylation or ubiquitination of p120-catenin abrogates TGFß-induced AJ dissociation and consequent tight junction (TJ) dissociation and cytoskeleton rearrangement, hence markedly blocking lung metastasis of murine breast cancer. Moreover, the T900 phosphorylation level of p120-catenin is positively correlated with malignancy of human breast cancer. Hence, our study reveals the underlying mechanism by which TGFß induces dissociation of AJs during EMT and provides a potential strategy to block tumor metastasis.


Asunto(s)
Cateninas/metabolismo , Transición Epitelial-Mesenquimal , Neoplasias/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Uniones Adherentes , Animales , Neoplasias de la Mama/etiología , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Células Cultivadas , Transición Epitelial-Mesenquimal/efectos de los fármacos , Femenino , Humanos , Ratones , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Neoplasias/etiología , Neoplasias/patología , Fosforilación , Factor de Crecimiento Transformador beta/farmacología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Catenina delta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA