Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Br J Cancer ; 131(6): 1080-1091, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39003371

RESUMEN

BACKGROUND: Gastric cancer (GC) is a deadly disease with poor overall survival and limited therapeutic options. Genetic alterations such as mutations and/or deletions in chromatin remodeling gene AT-rich interactive domain 1 A (ARID1A) occur frequently in GC. Although ARID1A mutations/deletions are not a druggable target for conventional treatments, novel therapeutic strategies based on a synthetic lethal approach may be effective for the treatment of ARID1A-deficient cancers. METHODS: A kinase inhibitor library containing 551 compounds was screened in ARID1A isogenic GC cells for the ability to induce synthetic lethality effect. Selected hits' activity was validated, and the mechanism of the most potent candidate drug, AKT inhibitor AD5363 (capivasertib), on induction of the synthetic lethality with ARID1A deficiency was investigated. RESULTS: After robust vulnerability screening of 551 diverse protein kinase inhibitors, we identified the AKT inhibitor AZD5363 as being the most potent lead compound in inhibiting viability of ARID1A-/- cells. A synthetic lethality between loss of ARID1A expression and AKT inhibition by AZD5363 was validated in both GC cell model system and xenograft model. Mechanistically, AZD5363 treatment induced pyroptotic cell death in ARID1A-deficient GC cells through activation of the Caspase-3/GSDME pathway. Furthermore, ARID1A occupied the AKT gene promoter and regulated its transcription negatively, thus the GC cells deficient in ARID1A showed increased expression and phosphorylation of AKT. CONCLUSIONS: Our study demonstrates a novel synthetic lethality interaction and unique mechanism between ARID1A loss and AKT inhibition, which may provide a therapeutic and mechanistic rationale for targeted therapy on patients with ARID1A-defective GC who are most likely to be beneficial to AZD5363 treatment.


Asunto(s)
Proteínas de Unión al ADN , Proteínas Proto-Oncogénicas c-akt , Piroptosis , Neoplasias Gástricas , Mutaciones Letales Sintéticas , Factores de Transcripción , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Humanos , Factores de Transcripción/genética , Factores de Transcripción/antagonistas & inhibidores , Animales , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas de Unión al ADN/genética , Piroptosis/efectos de los fármacos , Piroptosis/genética , Mutaciones Letales Sintéticas/efectos de los fármacos , Línea Celular Tumoral , Pirimidinas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Inhibidores de Proteínas Quinasas/farmacología , Pirroles/farmacología
2.
Chem Asian J ; 19(4): e202301000, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38282179

RESUMEN

Attributed to the characteristics of narrow band gap structural units and full spectral response, iso-indigo is often used as an electron acceptor in organic electronic materials. Organic molecules with large conjugated surfaces and strong intermolecular forces can form ordered stacked structures through self-assembly. In this paper, the self-assembly performances of IDCF3 and IDCN are regulated by changing the end groups. The effects of terminal groups on the resistive memory behaviours and reproducibility are investigated. The properties of IDCF3 and IDCN devices are characterized by UV-VIS spectroscopy, cyclic voltammetry and DSC diffraction. The results show that when the end groups with different steric hindrance are introduced into the ends of the molecules with good backbone plane, the conjugated surfaces of the molecules will bend due to the different steric hindrance of the end groups in the form of cambium and layer-ordered packing, which will affect the threshold voltage and device reproducibility.

3.
Int J Mol Sci ; 24(1)2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36614238

RESUMEN

Sialic acid-binding immunoglobulin-like lectin 15 (Siglec-15) has been identified as a crucial immune suppressor in human cancers, comparable to programmed cell death 1 ligand (PD-L1). However, the regulatory mechanisms underlying its transcriptional upregulation in human cancers remain largely unknown. Here, we show that the transcription factors ETS-1 and ETS-2 bound to the Siglec-15 promoter to enhance transcription and expression of Siglec-15 in hepatocellular carcinoma (HCC) cells and that transforming growth factor ß-1 (TGF-ß1) upregulated the expression of ETS-1 and ETS-2 and facilitated the binding of ETS-1 and ETS-2 to the Siglec-15 promoter. We further demonstrate that TGF-ß1 activated the Ras/C-Raf/MEK/ERK1/2 signaling pathway, leading to phosphorylation of ETS-1 and ETS-2, which consequently upregulates the transcription and expression of Siglec-15. Our study defines a detailed molecular profile of how Siglec-15 is transcriptionally regulated which may offer significant opportunity for therapeutic intervention on HCC immunotherapy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Línea Celular , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico
4.
Front Pharmacol ; 12: 692917, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34248642

RESUMEN

Koumine is an alkaloid that displays notable activity against inflammatory and neuropathic pain, but its therapeutic target and molecular mechanism still need further study. Translocator protein 18 kDa (TSPO) is a vital therapeutic target for pain treatment, and recent research implies that there may be allostery in TSPO. Our previous competitive binding assay hint that koumine may function as a TSPO positive allosteric modulator (PAM). Here, for the first time, we report the pharmacological characterization of koumine as a TSPO PAM. The results imply that koumine might be a high-affinity ligand of TSPO and that it likely acts as a PAM since it could delay the dissociation of 3H-PK11195 from TSPO. Importantly, the allostery was retained in vivo, as koumine augmented Ro5-4864-mediated analgesic and anti-inflammatory effects in several acute and chronic inflammatory and neuropathic pain models. Moreover, the positive allosteric modulatory effect of koumine on TSPO was further demonstrated in cell proliferation assays in T98G human glioblastoma cells. In summary, we have identified and characterized koumine as a TSPO PAM for the treatment of inflammatory and neuropathic pain. Our data lay a solid foundation for the use of the clinical candidate koumine to treat inflammatory and neuropathic pain, further demonstrate the allostery in TSPO, and provide the first proof of principle that TSPO PAM may be a novel avenue for the discovery of analgesics.

5.
J Nat Prod ; 79(10): 2635-2643, 2016 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-27657857

RESUMEN

To examine the effect of koumine, a Gelsemium alkaloid, on two experimental models of rheumatoid arthritis (RA), rats with adjuvant-induced arthritis (AIA) and collagen-induced arthritis (CIA) were administered koumine (0.6, 3, or 15 mg/kg/day) or vehicle through gastric gavage (i.g.). Clinical evaluation was performed via measurements of hind paw volume, arthritis index (AI) score, mechanical withdrawal threshold, organ weight, and by radiographic and histological examinations. Levels of interleukin (IL)-1ß, tumor necrosis factor (TNF)-α, and antitype II collagen (CII) antibody were also examined. In rats with AIA, koumine reduced the AI score and mechanical allodynia of the injected hind paw in a dose-dependent manner and significantly inhibited increase in thymus and liver weights. In rats with CIA, koumine inhibited increase in hind paw volume, AI score, and mechanical allodynia in a dose-dependent manner and reduced joint space narrowing. Furthermore, koumine also attenuated the increase in the expression of IL-1ß and TNF-α, as well as the robust increase of serum anti-CII antibodies in response to immunization. These results suggested that koumine effectively attenuated arthritis progression in two rat models of RA and that this therapeutic effect may be associated with its immunoregulatory action.


Asunto(s)
Artritis Reumatoide/inmunología , Colágeno/farmacología , Gelsemium/química , Alcaloides Indólicos/farmacología , Animales , Artritis Experimental , Artritis Reumatoide/tratamiento farmacológico , Citocinas/análisis , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Edema/tratamiento farmacológico , Femenino , Alcaloides Indólicos/química , Interleucina-1beta/análisis , Masculino , Metotrexato/farmacología , Estructura Molecular , Ratas , Ratas Endogámicas Lew , Ratas Wistar , Factor de Necrosis Tumoral alfa/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA