Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Vet Microbiol ; 294: 110105, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38729094

RESUMEN

C. perfringens type D strains are the leading cause of enterotoxaemia in ruminants such as goats, sheep, and cattle. However, there has been no prior research on the genomic characteristics of C. perfringens type D strains from various regions in China. Here, we investigated the antibiotic resistance, genomic characteristics, and phylogenetic relationship of C. perfringens type D isolates recovered from goat farms in Shaanxi, Gansu, and Ningxia provinces. The antibiotic resistance test indicated that the isolates displayed high minimum inhibitory concentration (MIC) values to sulfafurazole, whereas the other antibiotics tested, such as penicillin, enrofloxacin, and florfenicol, worked well on them. Additionally, only tetracycline resistance genes [tetA(P) and tetB(P)] were identified from the isolates. A collective of 13 toxin genes, including etx and cpe were detected among the isolates. Sequence comparison revealed that the etx and cpe genes shared high sequence identities, and they could coexist on a pCW3-like plasmid, representing a potential risk to both animal breeding and public health. Phylogenetic analysis using core genome multi-locus sequence typing (cgMLST) and core genome single nucleotide polymorphisms (SNPs) revealed the close genetic relationship and potential regional/transregional transmission of the C. perfringens type D isolates in Shaanxi and Gansu provinces. Furthermore, pan-genomic analysis suggested the functional differences at the protein-coding gene level, although isolates from the same source shared a close genetic relationship. In conclusion, this study indicated the antibiotic resistance, virulence markers, potential transregional transmission, and genomic diversity of C. perfringens type D strains from various regions in China, which could provide references for the prevention of C. perfringens foodborne diseases and further research.


Asunto(s)
Antibacterianos , Clostridium perfringens , Enfermedades de las Cabras , Cabras , Filogenia , Animales , Clostridium perfringens/genética , Clostridium perfringens/efectos de los fármacos , Clostridium perfringens/clasificación , Clostridium perfringens/aislamiento & purificación , Enfermedades de las Cabras/microbiología , Enfermedades de las Cabras/epidemiología , China/epidemiología , Antibacterianos/farmacología , Genoma Bacteriano , Pruebas de Sensibilidad Microbiana , Infecciones por Clostridium/microbiología , Infecciones por Clostridium/veterinaria , Infecciones por Clostridium/epidemiología , Tipificación de Secuencias Multilocus , Granjas , Genómica , Farmacorresistencia Bacteriana/genética , Polimorfismo de Nucleótido Simple
2.
mSystems ; 8(4): e0053523, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37458450

RESUMEN

Clostridium perfringens is a bacterial species of importance to both public and animal health. The gene optrA is the first gene that confers resistance to the tedizolid, a last-resort antimicrobial agent in human medicine. Herein, we whole-genome sequenced and analyzed one optrA-positive C. perfringens strain QHY-2 from Tibetan sheep in Qinghai province and identified one optrA plasmid pQHY-2. The plasmid shared similar structure with the optrA-positive plasmids p2C45 and p21-D-5b previously identified in C. perfringens, demonstrating the potential horizontal transmission of the optrA plasmids among C. perfringens strains. Annotation of the optrA-positive plasmids showed optrA and erm(A) located on a segment flanked by IS element IS1216E, and fexA, optrA, and erm(A) located on a segment flanked by IS element ISVlu1, which revealed the possible dissemination mechanism. Additionally, a Tn6218-like transposon carrying aac(6')-aph(2″) and erm(B) was also detected on pQHY-2, demonstrating the transposition of Tn6218 and spread of antibiotic resistance among Clostridium bacteria. Molecular analysis indicated the optrA-positive plasmids belonged to a plasmid type distinct from the pCW3-like plasmids, pCP13-like plasmids, or pIP404-like plasmids. Further structure analysis showed they might be formed by inserting segments into plasmid pCPCPI53k-r1_1, which coexist with two pCW3-like plasmids and one pCP13-like plasmid in C. perfringens strain CPI 53k-r1 isolated from a healthy human in Finland. IMPORTANCE Antimicrobial resistance is now a global concern posing threats to food safety and public health. The pCW3-like plasmids can encode several main toxin genes and three antibiotic resistance genes (ARGs), including tetA(P), tetB(P), and erm(B), which used to be considered as the main carrier of ARGs in Clostridium perfringens. In this study, we found the optrA plasmids, which belonged to a novel plasmid type, could also harbor many other ARGs, indicating this type of plasmid might be the potential repository of ARGs in C. perfringens. Additionally, this type of plasmid could coexist with the pCW3-like plasmids and pCP13-like plasmids that encoded toxin genes associated with gastrointestinal diseases, which showed the potential threat to public health.


Asunto(s)
Clostridium perfringens , Elementos Transponibles de ADN , Animales , Humanos , Ovinos/genética , Clostridium perfringens/genética , Plásmidos/genética , Antibacterianos/farmacología , Secuencia de Bases
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA