Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
2.
FEBS J ; 288(22): 6365-6391, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33387379

RESUMEN

Inflammation is a pathological hallmark associated with bacterial and viral infections, autoimmune diseases, genetic disorders, obesity and diabetes, as well as environmental stresses including physical and chemical trauma. Among numerous proteins regulating proinflammatory signaling, very few such as Protein kinase R (PKR), have been shown to play an all-pervading role in inflammation induced by varied stimuli. PKR was initially characterized as an interferon-inducible gene activated by viral double-stranded RNA with a role in protein translation inhibition. However, it has become increasingly clear that PKR is involved in multiple pathways that promote inflammation in response to stress activation, both dependent on and independent of its cellular protein activator of PKR (PACT). In this review, we discuss the signaling pathways that contribute to the initiation of inflammation, including Toll-like receptor, interferon, and RIG-I-like receptor signaling, as well as inflammasome activation. We go on to discuss the specific roles that PKR and PACT play in such proinflammatory signaling, as well as in metabolic syndrome- and environmental stress-induced inflammation.


Asunto(s)
Inflamación/metabolismo , Proteínas de Unión al ARN/metabolismo , eIF-2 Quinasa/metabolismo , Humanos , Transducción de Señal
3.
Elife ; 92020 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-32175843

RESUMEN

The inability of cells to adapt to increased environmental tonicity can lead to inflammatory gene expression and pathogenesis. The Rel family of transcription factors TonEBP and NF-κB p65 play critical roles in the switch from osmoadaptive homeostasis to inflammation, respectively. Here we identified PACT-mediated PKR kinase activation as a marker of the termination of adaptation and initiation of inflammation in Mus musculus embryonic fibroblasts. We found that high stress-induced PACT-PKR activation inhibits the interaction between NF-κB c-Rel and TonEBP essential for the increased expression of TonEBP-dependent osmoprotective genes. This resulted in enhanced formation of TonEBP/NF-κB p65 complexes and enhanced proinflammatory gene expression. These data demonstrate a novel role of c-Rel in the adaptive response to hyperosmotic stress, which is inhibited via a PACT/PKR-dependent dimer redistribution of the Rel family transcription factors. Our results suggest that inhibiting PACT-PKR signaling may prove a novel target for alleviating stress-induced inflammatory diseases.


Cells are sensitive to changes in their environment. For example, maintaining normal salt levels in the blood, also called tonicity, is essential for the health of individual cells and the organism as a whole. Tonicity controls the movement of water in and out of the cell: high levels of salt inside the cell draw water in, while high levels of salt outside the cell draw water out. If salt levels in the environment surrounding the cells become too high, too much water will be drawn out, causing the cells to shrink. Changes in tonicity can cause the cell to become stressed. Initially, cells adapt to this stress by switching on sets of genes that help restore fluid balance and allow the cell to regain its normal shape and size. If the increase in tonicity exceeds tolerable stress levels and harms the cell, this initiates an inflammatory response which ultimately leads to cell death. However, it remained unclear how cells switch from adapting to responding with inflammation. Now, Farabaugh et al. have used an experimental system which mimics high salt to identify the mechanism that allows cells to switch between these two responses. The experiments showed that when salt levels are too high, cells switch on a stress sensing protein called PACT, which activates another protein called PKR. When PACT was deleted from mouse cells, this led to a decrease in the activity of inflammatory genes, and prevented the cells from self-destructing. Other proteins that are involved in the adaptive and inflammatory response are the NF-κB family of proteins and TonEBP. Farabaugh et al. found that under low intensity stress, when salt levels outside the cell are slightly too high, a family member of NF-κB works with TonEBP to switch on adaptive genes. But, if salt levels continue to rise, PACT activates and turns on PKR. This blocks the interaction between NF-κB and TonEBP, allowing another family member of NF-κB to interact with TonEBP instead. This switches the adaptive response off and the inflammatory response on. There are many diseases that involve changes in tonicity, including diabetes, cancer, inflammatory bowel disease, and dry eye syndrome. Understanding the proteins involved in the adaptive and inflammatory response could lead to the development of drugs that help to protect cells from stress-induced damage.


Asunto(s)
Proteínas Portadoras/metabolismo , Presión Osmótica , Proteínas de Unión al ARN/metabolismo , eIF-2 Quinasa/metabolismo , Adaptación Fisiológica , Animales , Proteínas Portadoras/genética , Línea Celular , Regulación de la Expresión Génica , Humanos , Ratones , FN-kappa B/genética , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-rel/genética , Proteínas Proto-Oncogénicas c-rel/metabolismo , Interferencia de ARN , Proteínas de Unión al ARN/genética , Transducción de Señal , eIF-2 Quinasa/genética
4.
J Biol Chem ; 292(36): 14827-14835, 2017 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-28726642

RESUMEN

The breakdown of stored fat deposits into its components is a highly regulated process that maintains plasma levels of free fatty acids to supply energy to cells. Insulin-mediated transcription of Atgl, the enzyme that mediates the rate-limiting step in lipolysis, is a key point of this regulation. Under conditions such as obesity or insulin resistance, Atgl transcription is often misregulated, which can contribute to overall disease progression. The mechanisms by which Atgl is induced during adipogenesis are not fully understood. We utilized computational approaches to identify putative transcriptional regulatory elements in Atgl and then tested the effect of these elements and the transcription factors that bind to them in cultured preadipocytes and mature adipocytes. Here we report that Atgl is down-regulated by the basal transcription factor Sp1 in preadipocytes and that the magnitude of down-regulation depends on interactions between Sp1 and peroxisome proliferator-activated receptor γ (PPARγ). In mature adipocytes, when PPARγ is abundant, PPARγ abrogated transcriptional repression by Sp1 at the Atgl promoter and up-regulated Atgl mRNA expression. Targeting the PPARγ-Sp1 interaction could be a potential therapeutic strategy to restore insulin sensitivity by modulating Atgl levels in adipocytes.


Asunto(s)
Adipocitos/citología , Adipocitos/metabolismo , Adipogénesis/genética , Lipasa/genética , PPAR gamma/metabolismo , Factor de Transcripción Sp1/metabolismo , Transcripción Genética , Células 3T3-L1 , Animales , Línea Celular , Regulación hacia Abajo , Células HEK293 , Humanos , Lipasa/metabolismo , Ratones , Ratones Endogámicos C57BL , Mutagénesis Sitio-Dirigida
5.
Mol Cell Biol ; 37(4)2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-27920257

RESUMEN

High extracellular osmolarity results in a switch from an adaptive to an inflammatory gene expression program. We show that hyperosmotic stress activates the protein kinase R (PKR) independently of its RNA-binding domain. In turn, PKR stimulates nuclear accumulation of nuclear factor κB (NF-κB) p65 species phosphorylated at serine-536, which is paralleled by the induction of a subset of inflammatory NF-κB p65-responsive genes, including inducible nitric oxide synthase (iNOS), interleukin-6 (IL-6), and IL-1ß. The PKR-mediated hyperinduction of iNOS decreases cell survival in mouse embryonic fibroblasts via mechanisms involving nitric oxide (NO) synthesis and posttranslational modification of proteins. Moreover, we demonstrate that the PKR inhibitor C16 ameliorates both iNOS amplification and disease-induced phenotypic breakdown of the intestinal epithelial barrier caused by an increase in extracellular osmolarity induced by dextran sodium sulfate (DSS) in vivo Collectively, these findings indicate that PKR activation is an essential part of the molecular switch from adaptation to inflammation in response to hyperosmotic stress.


Asunto(s)
Inflamación/enzimología , Inflamación/patología , Presión Osmótica , eIF-2 Quinasa/metabolismo , Animales , Apoptosis/genética , Colitis/metabolismo , Colitis/patología , Enterocitos/metabolismo , Activación Enzimática , Inflamación/genética , Ratones Endogámicos C57BL , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Nitrosación , Fenotipo , Fosforilación , ARN Bicatenario/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factor de Transcripción ReIA/metabolismo , eIF-2 Quinasa/antagonistas & inhibidores
6.
J Neurosci ; 32(34): 11706-15, 2012 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-22915113

RESUMEN

Intraperitoneal injection of the Gram-negative bacterial endotoxin lipopolysaccharide (LPS) elicits a rapid innate immune response. While this systemic inflammatory response can be destructive, tolerable low doses of LPS render the brain transiently resistant to subsequent injuries. However, the mechanism by which microglia respond to LPS stimulation and participate in subsequent neuroprotection has not been documented. In this study, we first established a novel LPS treatment paradigm where mice were injected intraperitoneally with 1.0 mg/kg LPS for four consecutive days to globally activate CNS microglia. By using a reciprocal bone marrow transplantation procedure between wild-type and Toll-like receptor 4 (TLR4) mutant mice, we demonstrated that the presence of LPS receptor (TLR4) is not required on hematogenous immune cells but is required on cells that are not replaced by bone marrow transplantation, such as vascular endothelia and microglia, to transduce microglial activation and neuroprotection. Furthermore, we showed that activated microglia physically ensheathe cortical projection neurons, which have reduced axosomatic inhibitory synapses from the neuronal perikarya. In line with previous reports that inhibitory synapse reduction protects neurons from degeneration and injury, we show here that neuronal cell death and lesion volumes are significantly reduced in LPS-treated animals following experimental brain injury. Together, our results suggest that activated microglia participate in neuroprotection and that this neuroprotection is likely achieved through reduction of inhibitory axosomatic synapses. The therapeutic significance of these findings rests not only in identifying neuroprotective functions of microglia, but also in establishing the CNS location of TLR4 activation.


Asunto(s)
Lesiones Encefálicas/tratamiento farmacológico , Lipopolisacáridos/administración & dosificación , Microglía/efectos de los fármacos , Fármacos Neuroprotectores/administración & dosificación , Receptor Toll-Like 4/metabolismo , Animales , Antígenos CD/metabolismo , Apoptosis/efectos de los fármacos , Trasplante de Médula Ósea , Lesiones Encefálicas/patología , Lesiones Encefálicas/cirugía , Bromodesoxiuridina/metabolismo , Proliferación Celular/efectos de los fármacos , Sistema Nervioso Central/citología , Sistema Nervioso Central/efectos de los fármacos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Esquema de Medicación , Citometría de Flujo , Inmunidad Innata/efectos de los fármacos , Etiquetado Corte-Fin in Situ , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Noqueados , Análisis por Micromatrices , Microglía/metabolismo , Microglía/ultraestructura , Microscopía Inmunoelectrónica , Corteza Motora/patología , Corteza Motora/ultraestructura , Sinapsis/genética , Sinapsis/metabolismo , Sinapsis/ultraestructura , Receptor Toll-Like 4/deficiencia , Quimera por Trasplante
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA