Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
bioRxiv ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39253413

RESUMEN

Recent gains in functional magnetic resonance imaging (fMRI) studies have been driven by increasingly sophisticated statistical and computational techniques and the ability to capture brain data at finer spatial and temporal resolution. These advances allow researchers to develop population-level models of the functional brain representations underlying behavior, performance, clinical status, and prognosis. However, even following conventional preprocessing pipelines, considerable inter-individual disparities in functional localization persist, posing a hurdle to performing compelling population-level inference. Persistent misalignment in functional topography after registration and spatial normalization will reduce power in developing predictive models and biomarkers, reduce the specificity of estimated brain responses and patterns, and provide misleading results on local neural representations and individual differences. This study aims to determine how connectivity hyperalignment (CHA)-an analytic approach for handling functional misalignment-can change estimated functional brain network topologies at various spatial scales from the coarsest set of parcels down to the vertex-level scale. The findings highlight the role of CHA in improving inter-subject similarities, while retaining individual-specific information and idiosyncrasies at finer spatial granularities. This highlights the potential for fine-grained connectivity analysis using this approach to reveal previously unexplored facets of brain structure and function.

2.
Brain Sci ; 13(5)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37239285

RESUMEN

(1) Background: Chaos, a feature of nonlinear dynamical systems, is well suited for exploring biological time series, such as heart rates, respiratory records, and particularly electroencephalograms. The primary purpose of this article is to review recent studies using chaos theory and nonlinear dynamical methods to analyze human performance in different brain processes. (2) Methods: Several studies have examined chaos theory and related analytical tools for describing brain dynamics. The present study provides an in-depth analysis of the computational methods that have been proposed to uncover brain dynamics. (3) Results: The evidence from 55 articles suggests that cognitive function is more frequently assessed than other brain functions in studies using chaos theory. The most frequently used techniques for analyzing chaos include the correlation dimension and fractal analysis. Approximate, Kolmogorov and sample entropy account for the largest proportion of entropy algorithms in the reviewed studies. (4) Conclusions: This review provides insights into the notion of the brain as a chaotic system and the successful use of nonlinear methods in neuroscience studies. Additional studies of brain dynamics would aid in improving our understanding of human cognitive performance.

3.
Brain Sci ; 13(2)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36831789

RESUMEN

(1) Background: Multiple sclerosis (MS) is an immune system disease in which myelin in the nervous system is affected. This abnormal immune system mechanism causes physical disabilities and cognitive impairment. Functional magnetic resonance imaging (fMRI) is a common neuroimaging technique used in studying MS. Computational methods have recently been applied for disease detection, notably graph theory, which helps researchers understand the entire brain network and functional connectivity. (2) Methods: Relevant databases were searched to identify articles published since 2000 that applied graph theory to study functional brain connectivity in patients with MS based on fMRI. (3) Results: A total of 24 articles were included in the review. In recent years, the application of graph theory in the MS field received increased attention from computational scientists. The graph-theoretical approach was frequently combined with fMRI in studies of functional brain connectivity in MS. Lower EDSSs of MS stage were the criteria for most of the studies (4) Conclusions: This review provides insights into the role of graph theory as a computational method for studying functional brain connectivity in MS. Graph theory is useful in the detection and prediction of MS and can play a significant role in identifying cognitive impairment associated with MS.

4.
Front Neurosci ; 16: 906290, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36583102

RESUMEN

Deep neural networks (DNNs) have transformed the field of computer vision and currently constitute some of the best models for representations learned via hierarchical processing in the human brain. In medical imaging, these models have shown human-level performance and even higher in the early diagnosis of a wide range of diseases. However, the goal is often not only to accurately predict group membership or diagnose but also to provide explanations that support the model decision in a context that a human can readily interpret. The limited transparency has hindered the adoption of DNN algorithms across many domains. Numerous explainable artificial intelligence (XAI) techniques have been developed to peer inside the "black box" and make sense of DNN models, taking somewhat divergent approaches. Here, we suggest that these methods may be considered in light of the interpretation goal, including functional or mechanistic interpretations, developing archetypal class instances, or assessing the relevance of certain features or mappings on a trained model in a post-hoc capacity. We then focus on reviewing recent applications of post-hoc relevance techniques as applied to neuroimaging data. Moreover, this article suggests a method for comparing the reliability of XAI methods, especially in deep neural networks, along with their advantages and pitfalls.

5.
Brain Sci ; 12(11)2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36421899

RESUMEN

The perception of physical exertion is the cognitive sensation of work demands associated with voluntary muscular actions. Measurements of exerted force are crucial for avoiding the risk of overexertion and understanding human physical capability. For this purpose, various physiological measures have been used; however, the state-of-the-art in-force exertion evaluation lacks assessments of underlying neurophysiological signals. The current study applied a graph theoretical approach to investigate the topological changes in the functional brain network induced by predefined force exertion levels for twelve female participants during an isometric arm task and rated their perceived physical comfort levels. The functional connectivity under predefined force exertion levels was assessed using the coherence method for 84 anatomical brain regions of interest at the electroencephalogram (EEG) source level. Then, graph measures were calculated to quantify the network topology for two frequency bands. The results showed that high-level force exertions are associated with brain networks characterized by more significant clustering coefficients (6%), greater modularity (5%), higher global efficiency (9%), and less distance synchronization (25%) under alpha coherence. This study on the neurophysiological basis of physical exertions with various force levels suggests that brain regions communicate and cooperate higher when muscle force exertions increase to meet the demands of physically challenging tasks.

6.
Brain Sci ; 12(8)2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36009157

RESUMEN

Task fMRI provides an opportunity to analyze the working mechanisms of the human brain during specific experimental paradigms. Deep learning models have increasingly been applied for decoding and encoding purposes study to representations in task fMRI data. More recently, graph neural networks, or neural networks models designed to leverage the properties of graph representations, have recently shown promise in task fMRI decoding studies. Here, we propose an end-to-end graph convolutional network (GCN) framework with three convolutional layers to classify task fMRI data from the Human Connectome Project dataset. We compared the predictive performance of our GCN model across four of the most widely used node embedding algorithms-NetMF, RandNE, Node2Vec, and Walklets-to automatically extract the structural properties of the nodes in the functional graph. The empirical results indicated that our GCN framework accurately predicted individual differences (0.978 and 0.976) with the NetMF and RandNE embedding methods, respectively. Furthermore, to assess the effects of individual differences, we tested the classification performance of the model on sub-datasets divided according to gender and fluid intelligence. Experimental results indicated significant differences in the classification predictions of gender, but not high/low fluid intelligence fMRI data. Our experiments yielded promising results and demonstrated the superior ability of our GCN in modeling task fMRI data.

7.
Neuroimage ; 256: 119246, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35477020

RESUMEN

Circadian rhythms (lasting approximately 24 h) control and entrain various physiological processes, ranging from neural activity and hormone secretion to sleep cycles and eating habits. Several studies have shown that time of day (TOD) is associated with human cognition and brain functions. In this study, utilizing a chronotype-based paradigm, we applied a graph theory approach on resting-state functional MRI (rs-fMRI) data to compare whole-brain functional network topology between morning and evening sessions and between morning-type (MT) and evening-type (ET) participants. Sixty-two individuals (31 MT and 31 ET) underwent two fMRI sessions, approximately 1 hour (morning) and 10 h (evening) after their wake-up time, according to their declared habitual sleep-wake pattern on a regular working day. In the global analysis, the findings revealed the effect of TOD on functional connectivity (FC) patterns, including increased small-worldness, assortativity, and synchronization across the day. However, we identified no significant differences based on chronotype categories. The study of the modular structure of the brain at mesoscale showed that functional networks tended to be more integrated with one another in the evening session than in the morning session. Local/regional changes were affected by both factors (i.e., TOD and chronotype), mostly in areas associated with somatomotor, attention, frontoparietal, and default networks. Furthermore, connectivity and hub analyses revealed that the somatomotor, ventral attention, and visual networks covered the most highly connected areas in the morning and evening sessions: the latter two were more active in the morning sessions, and the first was identified as being more active in the evening. Finally, we performed a correlation analysis to determine whether global and nodal measures were associated with subjective assessments across participants. Collectively, these findings contribute to an increased understanding of diurnal fluctuations in resting brain activity and highlight the role of TOD in future studies on brain function and the design of fMRI experiments.


Asunto(s)
Ritmo Circadiano , Imagen por Resonancia Magnética , Mapeo Encefálico , Ritmo Circadiano/fisiología , Humanos , Descanso/fisiología , Sueño/fisiología
8.
Biology (Basel) ; 11(1)2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-35053123

RESUMEN

Coronavirus disease 2019 (COVID-19) was first discovered in China; within several months, it spread worldwide and became a pandemic. Although the virus has spread throughout the globe, its effects have differed. The pandemic diffusion network dynamics (PDND) approach was proposed to better understand the spreading behavior of COVID-19 in the US and Japan. We used daily confirmed cases of COVID-19 from 5 January 2020 to 31 July 2021, for all states (prefectures) of the US and Japan. By applying the pandemic diffusion network dynamics (PDND) approach to COVID-19 time series data, we developed diffusion graphs for the US and Japan. In these graphs, nodes represent states and prefectures (regions), and edges represent connections between regions based on the synchrony of COVID-19 time series data. To compare the pandemic spreading dynamics in the US and Japan, we used graph theory metrics, which targeted the characterization of COVID-19 bedhavior that could not be explained through linear methods. These metrics included path length, global and local efficiency, clustering coefficient, assortativity, modularity, network density, and degree centrality. Application of the proposed approach resulted in the discovery of mostly minor differences between analyzed countries. In light of these findings, we focused on analyzing the reasons and defining research hypotheses that, upon addressing, could shed more light on the complex phenomena of COVID-19 virus spread and the proposed PDND methodology.

9.
Brain Sci ; 11(11)2021 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-34827400

RESUMEN

BACKGROUND: Cataract is one of the most common age-related vision deteriorations, leading to opacification of the lens and therefore visual impairment as well as blindness. Both cataract extraction and the implantation of blue light filtering lens are believed to improve not only vision but also overall functioning. METHODS: Thirty-four cataract patients were subject to resting-state functional magnetic resonance imaging before and after cataract extraction and intraocular lens implantation (IOL). Global and local graph metrics were calculated in order to investigate the reorganization of functional network architecture associated with alterations in blue light transmittance. Psychomotor vigilance task (PVT) was conducted. RESULTS: Graph theory-based analysis revealed decreased eigenvector centrality after the cataract extraction and IOL replacement in inferior occipital gyrus, superior parietal gyrus and many cerebellum regions as well as increased clustering coefficient in superior and inferior parietal gyrus, middle temporal gyrus and various cerebellum regions. PVT results revealed significant change between experimental sessions as patients responded faster after IOL replacement. Moreover, a few regions were correlated with the difference in blue light transmittance and the time reaction in PVT. CONCLUSION: Current study revealed substantial functional network architecture reorganization associated with cataract extraction and alteration in blue light transmittance.

10.
Brain Sci ; 11(11)2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34827524

RESUMEN

Electroencephalography (EEG) is a non-invasive technique used to record the brain's evoked and induced electrical activity from the scalp. Artificial intelligence, particularly machine learning (ML) and deep learning (DL) algorithms, are increasingly being applied to EEG data for pattern analysis, group membership classification, and brain-computer interface purposes. This study aimed to systematically review recent advances in ML and DL supervised models for decoding and classifying EEG signals. Moreover, this article provides a comprehensive review of the state-of-the-art techniques used for EEG signal preprocessing and feature extraction. To this end, several academic databases were searched to explore relevant studies from the year 2000 to the present. Our results showed that the application of ML and DL in both mental workload and motor imagery tasks has received substantial attention in recent years. A total of 75% of DL studies applied convolutional neural networks with various learning algorithms, and 36% of ML studies achieved competitive accuracy by using a support vector machine algorithm. Wavelet transform was found to be the most common feature extraction method used for all types of tasks. We further examined the specific feature extraction methods and end classifier recommendations discovered in this systematic review.

11.
Brain Sci ; 11(1)2021 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-33467070

RESUMEN

Significant differences exist in human brain functions affected by time of day and by people's diurnal preferences (chronotypes) that are rarely considered in brain studies. In the current study, using network neuroscience and resting-state functional MRI (rs-fMRI) data, we examined the effect of both time of day and the individual's chronotype on whole-brain network organization. In this regard, 62 participants (39 women; mean age: 23.97 ± 3.26 years; half morning- versus half evening-type) were scanned about 1 and 10 h after wake-up time for morning and evening sessions, respectively. We found evidence for a time-of-day effect on connectivity profiles but not for the effect of chronotype. Compared with the morning session, we found relatively higher small-worldness (an index that represents more efficient network organization) in the evening session, which suggests the dominance of sleep inertia over the circadian and homeostatic processes in the first hours after waking. Furthermore, local graph measures were changed, predominantly across the left hemisphere, in areas such as the precentral gyrus, putamen, inferior frontal gyrus (orbital part), inferior temporal gyrus, as well as the bilateral cerebellum. These findings show the variability of the functional neural network architecture during the day and improve our understanding of the role of time of day in resting-state functional networks.

12.
Front Neurosci ; 13: 1087, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31680823

RESUMEN

Sleep is a complex and dynamic process for maintaining homeostasis, and a lack of sleep can disrupt whole-body functioning. No organ is as vulnerable to the loss of sleep as the brain. Accordingly, we examined a set of task-based functional magnetic resonance imaging (fMRI) data by using graph theory to assess brain topological changes in subjects in a state of chronic sleep restriction, and then identified diurnal variability in the graph-theoretic measures. Task-based fMRI data were collected in a 1.5T MR scanner from the same participants on two days: after a week of fully restorative sleep and after a week with 35% sleep curtailment. Each day included four scanning sessions throughout the day (at approximately 10:00 AM, 2:00 PM, 6:00 PM, and 10:00 PM). A modified spatial cueing task was applied to evaluate sustained attention. After sleep restriction, the characteristic path length significantly increased at all measurement times, and small-worldness significantly decreased. Assortativity, a measure of network fault tolerance, diminished over the course of the day in both conditions. Local graph measures were altered primarily across the limbic system (particularly in the hippocampus, parahippocampal gyrus, and amygdala), default mode network, and visual network.

13.
Front Neurosci ; 13: 585, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31249501

RESUMEN

Background: Analysis of the human connectome using functional magnetic resonance imaging (fMRI) started in the mid-1990s and attracted increasing attention in attempts to discover the neural underpinnings of human cognition and neurological disorders. In general, brain connectivity patterns from fMRI data are classified as statistical dependencies (functional connectivity) or causal interactions (effective connectivity) among various neural units. Computational methods, especially graph theory-based methods, have recently played a significant role in understanding brain connectivity architecture. Objectives: Thanks to the emergence of graph theoretical analysis, the main purpose of the current paper is to systematically review how brain properties can emerge through the interactions of distinct neuronal units in various cognitive and neurological applications using fMRI. Moreover, this article provides an overview of the existing functional and effective connectivity methods used to construct the brain network, along with their advantages and pitfalls. Methods: In this systematic review, the databases Science Direct, Scopus, arXiv, Google Scholar, IEEE Xplore, PsycINFO, PubMed, and SpringerLink are employed for exploring the evolution of computational methods in human brain connectivity from 1990 to the present, focusing on graph theory. The Cochrane Collaboration's tool was used to assess the risk of bias in individual studies. Results: Our results show that graph theory and its implications in cognitive neuroscience have attracted the attention of researchers since 2009 (as the Human Connectome Project launched), because of their prominent capability in characterizing the behavior of complex brain systems. Although graph theoretical approach can be generally applied to either functional or effective connectivity patterns during rest or task performance, to date, most articles have focused on the resting-state functional connectivity. Conclusions: This review provides an insight into how to utilize graph theoretical measures to make neurobiological inferences regarding the mechanisms underlying human cognition and behavior as well as different brain disorders.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA