Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Water Res ; 261: 122029, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38996728

RESUMEN

The contribution of ships to the microbial faecal pollution status of water bodies is largely unknown but frequently of human health concern. No methodology for a comprehensive and target-orientated system analysis was available so far. We developed a novel approach for integrated and multistage impact evaluation. The approach includes, i) theoretical faecal pollution source profiling (PSP, i.e., size and pollution capacity estimation from municipal vs. ship sewage disposal) for impact scenario estimation and hypothesis generation, ii) high-resolution field assessment of faecal pollution levels and chemo-physical water quality at the selected river reaches, using standardized faecal indicators (cultivation-based) and genetic microbial source tracking markers (qPCR-based), and iii) integrated statistical analyses of the observed faecal pollution and the number of ships assessed by satellite-based automated ship tracking (i.e., automated identification system, AIS) at local and regional scales. The new approach was realised at a 230 km long Danube River reach in Austria, enabling detailed understanding of the complex pollution characteristics (i.e., longitudinal/cross-sectional river and upstream/downstream docking area analysis). Faecal impact of navigation was demonstrated to be remarkably low at regional and local scale (despite a high local contamination capacity), indicating predominantly correct disposal practices during the investigated period. Nonetheless, faecal emissions were sensitively traceable, attributable to the ship category (discriminated types: cruise, passenger and freight ships) and individual vessels (docking time analysis) at one docking area by the link with AIS data. The new innovative and sensitive approach is transferrable to any water body worldwide with available ship-tracking data, supporting target-orientated monitoring and evidence-based management practices.

2.
Environ Sci Pollut Res Int ; 31(33): 45697-45710, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38977549

RESUMEN

The Danube River is, at 2857 km, the second longest river in Europe and the most international river in the world with 19 countries in its catchment. Along the entire river, faecal pollution levels are mainly influenced by point-source emissions from treated and untreated sewage of municipal origin under base-flow conditions. In the past 2 decades, large investments in wastewater collection and treatment infrastructure were made in the European Union (EU) Member States located in the Danube River Basin (DRB). Overall, the share of population equivalents with appropriately biologically treated wastewater (without disinfection) has increased from 69% to more than 85%. The proportion of tertiary treatment has risen from 46 to 73%. In contrast, no comparable improvements of wastewater infrastructure took place in non-EU Member States in the middle and lower DRB, where a substantial amount of untreated wastewater is still directly discharged into the Danube River. Faecal pollution levels along the whole Danube River and the confluence sites of the most important tributaries were monitored during four Danube River expeditions, the Joint Danube Surveys (JDS). During all four surveys, the longitudinal patterns of faecal pollution were highly consistent, with generally lower levels in the upper section and elevated levels and major hotspots in the middle and lower sections of the Danube River. From 2001 to 2019, a significant decrease in faecal pollution levels could be observed in all three sections with average reduction rates between 72 and 86%. Despite this general improvement in microbiological water quality, no such decreases were observed for the highly polluted stretch in Central Serbia. Further improvements in microbiological water quality can be expected for the next decades on the basis of further investments in wastewater infrastructure in the EU Member States, in the middle and lower DRB. In the upper DRB, and due to the high compliance level as regards collection and treatment, improvements can further be achieved by upgrading sewage treatment plants with quaternary treatment steps as well as by preventing combined sewer overflows. The accession of the Western Balkan countries to the EU would also significantly boost investments in wastewater infrastructure and water quality improvements in the middle section of the Danube. Continuing whole-river expeditions such as the Joint Danube Surveys is highly recommended to monitor the developments in water quality in the future.


Asunto(s)
Monitoreo del Ambiente , Heces , Ríos , Aguas Residuales , Ríos/química , Aguas Residuales/química , Heces/química , Eliminación de Residuos Líquidos , Aguas del Alcantarillado , Contaminación del Agua
3.
Front Immunol ; 15: 1373255, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38585266

RESUMEN

Acting through a combination of direct and indirect pathogen clearance mechanisms, blood-derived antimicrobial compounds (AMCs) play a pivotal role in innate immunity, safeguarding the host against invading microorganisms. Besides their antimicrobial activity, some AMCs can neutralize endotoxins, preventing their interaction with immune cells and avoiding an excessive inflammatory response. In this study, we aimed to investigate the influence of unfractionated heparin, a polyanionic drug clinically used as anticoagulant, on the endotoxin-neutralizing and antibacterial activity of blood-derived AMCs. Serum samples from healthy donors were pre-incubated with increasing concentrations of heparin for different time periods and tested against pathogenic bacteria (Acinetobacter baumannii, Enterococcus faecium, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus) and endotoxins from E. coli, K. pneumoniae, and P. aeruginosa. Heparin dose-dependently decreased the activity of blood-derived AMCs. Consequently, pre-incubation with heparin led to increased activity of LPS and higher values of the pro-inflammatory cytokines tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6). Accordingly, higher concentrations of A. baumannii, E. coli, K. pneumoniae, and P. aeruginosa were observed as well. These findings underscore the neutralizing effect of unfractionated heparin on blood-derived AMCs in vitro and may lead to alternative affinity techniques for isolating and characterizing novel AMCs with the potential for clinical translation.


Asunto(s)
Antiinfecciosos , Heparina , Heparina/farmacología , Escherichia coli , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Endotoxinas/farmacología , Klebsiella pneumoniae
4.
Int J Hyg Environ Health ; 258: 114361, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552533

RESUMEN

Antimicrobial resistance (AMR) poses a major threat to human health worldwide. AMR can be introduced into natural aquatic ecosystems, for example, from clinical facilities via wastewater emissions. Understanding AMR patterns in environmental populations of bacterial pathogens is important to elucidate propagation routes and develop mitigation strategies. In this study, AMR patterns of Escherichia coli isolates from urinary tract infections and colonised urinary catheters of inpatients and outpatients were compared to isolates from the Danube River within the same catchment in Austria to potentially link environmental with clinical resistance patterns. Susceptibility to 20 antibiotics was tested for 697 patient, 489 water and 440 biofilm isolates. The resistance ratios in patient isolates were significantly higher than in the environmental isolates and higher resistance ratios were found in biofilm in comparison to water isolates. The role of the biofilm as potential sink of resistances was reflected by two extended-spectrum beta-lactamase (ESBL) producing isolates in the biofilm while none were found in water, and by higher amoxicillin/clavulanic acid resistance ratios in biofilm compared to patient isolates. Although, resistances to last-line antibiotics such as carbapenems and tigecycline were found in the patient and in the environmental isolates, they still occurred at low frequency.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli , Humanos , Antibacterianos/farmacología , Aguas Residuales , Austria , Ríos/microbiología , Ecosistema , beta-Lactamasas , Agua , Biopelículas , Infecciones por Escherichia coli/microbiología , Pruebas de Sensibilidad Microbiana
5.
Water Res ; 252: 121188, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38324987

RESUMEN

Ensuring biological stability in drinking water distribution systems (DWDSs) is important to reduce the risk of aesthetic, operational and hygienic impairments of the distributed water. Drinking water after treatment often changes in quality during transport due to interactions with pipe-associated biofilms, temperature increases and disinfectant residual decay leading to potential biological instability. To comprehensively assess the potential for biological instability in a large chlorinated DWDS, a tool-box of bacterial biomass and activity parameters was applied, introducing bacterial community turnover times (BaCTT) as a direct, sensitive and easy-to-interpret quantitative parameter based on the combination of 3H-leucine incorporation with bacterial biomass. Using BaCTT, hotspots and periods of bacterial growth and potential biological instability could be identified in the DWDS that is fed by water with high bacterial growth potential. A de-coupling of biomass from activity parameters was observed, suggesting that bacterial biomass parameters depict seasonally fluctuating raw water quality rather than processes related to biological stability of the finished water in the DWDS. BaCTT, on the other hand, were significantly correlated to water age, disinfectant residual, temperature and a seasonal factor, indicating a higher potential of biological instability at more distant sampling sites and later in the year. As demonstrated, BaCTT is suggested as a novel, sensitive and very useful parameter for assessing the biological instability potential. However, additional studies in other DWDSs are needed to investigate the general applicability of BaCTT depending on water source, applied treatment processes, biofilm growth potential on different pipe materials, or size, age and complexity of the DWDS.


Asunto(s)
Desinfectantes , Agua Potable , Purificación del Agua , Austria , Calidad del Agua , Bacterias , Biopelículas , Abastecimiento de Agua , Microbiología del Agua
6.
Water Res ; 252: 121244, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38340455

RESUMEN

The global spread of antimicrobial resistance (AMR) in the environment is a growing health threat. Large rivers are of particular concern as they are highly impacted by wastewater discharge while being vital lifelines serving various human needs. A comprehensive understanding of occurrence, spread and key drivers of AMR along whole river courses is largely lacking. We provide a holistic approach by studying spatiotemporal patterns and hotspots of antibiotic resistance genes (ARGs) along 2311 km of the navigable Danube River, combining a longitudinal and temporal monitoring campaign. The integration of advanced faecal pollution diagnostics and environmental and chemical key parameters allowed linking ARG concentrations to the major pollution sources and explaining the observed patterns. Nine AMR markers, including genes conferring resistance to five different antibiotic classes of clinical and environmental relevance, and one integrase gene were determined by probe-based qPCR. All AMR targets could be quantified in Danube River water, with intI1 and sul1 being ubiquitously abundant, qnrS, tetM, blaTEM with intermediate abundance and blaOXA-48like, blaCTX-M-1 group, blaCTX-M-9 group and blaKPC genes with rare occurrence. Human faecal pollution from municipal wastewater discharges was the dominant factor shaping ARG patterns along the Danube River. Other significant correlations of specific ARGs were observed with discharge, certain metals and pesticides. In contrast, intI1 was not associated with wastewater but was already established in the water microbiome. Animal contamination was detected only sporadically and was correlated with ARGs only in the temporal sampling set. During temporal monitoring, an extraordinary hotspot was identified emphasizing the variability within natural waters. This study provides the first comprehensive baseline concentrations of ARGs in the Danube River and lays the foundation for monitoring future trends and evaluating potential reduction measures. The applided holistic approach proved to be a valuable methodological contribution towards a better understanding of the environmental occurrence of AMR.


Asunto(s)
Genes Bacterianos , Ríos , Animales , Humanos , Antibacterianos/farmacología , Antibacterianos/análisis , Aguas Residuales , Farmacorresistencia Microbiana/genética , Agua/análisis
7.
Water Res ; 253: 121109, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38377920

RESUMEN

Running cold and hot water in buildings is a widely established commodity. However, interests regarding hygiene and microbiological aspects had so far been focussed on cold water. Little attention has been given to the microbiology of domestic hot-water installations (DHWIs), except for aspects of pathogenic Legionella. World-wide, regulations consider hot (or warm) water as 'heated drinking water' that must comply (cold) drinking water (DW) standards. However, the few reports that exist indicate presence and growth of microbial flora in DHWIs, even when supplied with water with disinfectant residual. Using flow cytometric (FCM) total cell counting (TCC), FCM-fingerprinting, and 16S rRNA-gene-based metagenomic analysis, the characteristics and composition of bacterial communities in cold drinking water (DW) and hot water from associated boilers (operating at 50 - 60 °C) was studied in 14 selected inhouse DW installations located in Switzerland and Austria. A sampling strategy was applied that ensured access to the bulk water phase of both, supplied cold DW and produced hot boiler water. Generally, 1.3- to 8-fold enhanced TCCs were recorded in hot water compared to those in the supplied cold DW. FCM-fingerprints of cold and corresponding hot water from individual buildings indicated different composition of cold- and hot-water microbial floras. Also, hot waters from each of the boilers sampled had its own individual FCM-fingerprint. 16S rRNA-gene-based metagenomic analysis confirmed the marked differences in composition of microbiomes. E.g., in three neighbouring houses supplied from the same public network pipe each hot-water boiler contained its own thermophilic bacterial flora. Generally, bacterial diversity in cold DW was broad, that in hot water was restricted, with mostly thermophilic strains from the families Hydrogenophilaceae, Nitrosomonadaceae and Thermaceae dominating. Batch growth assays, consisting of cold DW heated up to 50 - 60 °C and inoculated with hot water, resulted in immediate cell growth with doubling times between 5 and 10 h. When cold DW was used as an inoculum no significant growth was observed. Even boilers supplied with UVC-treated cold DW contained an actively growing microbial flora, suggesting such hot-water systems as autonomously operating, thermophilic bioreactors. The generation of assimilable organic carbon from dissolved organic carbon due to heating appears to be the driver for growth of thermophilic microbial communities. Our report suggests that a man-made microbial ecosystem, very close to us all and of potential hygienic importance, may have been overlooked so far. Despite consumers having been exposed to microbial hot-water flora for a long time, with no major pathogens so far been associated specifically with hot-water usage (except for Legionella), the role of harmless thermophiles and their interaction with potential human pathogens able to grow at elevated temperatures in DHWIs remains to be investigated.


Asunto(s)
Agua Potable , Legionella , Humanos , Agua Potable/microbiología , ARN Ribosómico 16S , Ecosistema , Abastecimiento de Agua , Bacterias/genética , Microbiología del Agua
8.
Wien Klin Wochenschr ; 135(21-22): 597-608, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37530997

RESUMEN

Vibrio cholerae, an important human pathogen, is naturally occurring in specific aquatic ecosystems. With very few exceptions, only the cholera-toxigenic strains belonging to the serogroups O1 and O139 are responsible for severe cholera outbreaks with epidemic or pandemic potential. All other nontoxigenic, non-O1/non-O139 V. cholerae (NTVC) strains may cause various other diseases, such as mild to severe infections of the ears, of the gastrointestinal and urinary tracts as well as wound and bloodstream infections. Older, immunocompromised people and patients with specific preconditions have an elevated risk. In recent years, worldwide reports demonstrated that NTVC infections are on the rise, caused amongst others by elevated water temperatures due to global warming.The aim of this review is to summarize the knowledge gained during the past two decades on V. cholerae infections and its occurrence in bathing waters in Austria, with a special focus on the lake Neusiedler See. We investigated whether NTVC infections have increased and which specific environmental conditions favor the occurrence of NTVC. We present an overview of state of the art methods that are currently available for clinical and environmental diagnostics. A preliminary public health risk assessment concerning NTVC infections related to the Neusiedler See was established. In order to raise awareness of healthcare professionals for NTVC infections, typical symptoms, possible treatment options and the antibiotic resistance status of Austrian NTVC isolates are discussed.


Asunto(s)
Cólera , Vibrio cholerae , Humanos , Cólera/epidemiología , Austria/epidemiología , Ecosistema
9.
Int J Hyg Environ Health ; 253: 114241, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37611533

RESUMEN

With the advent of molecular biology diagnostics, different quantitative PCR assays have been developed for use in Source Tracking (ST), with none of them showing 100% specificity and sensitivity. Most studies have been conducted at a regional level and mainly in fecal slurry rather than in animal wastewater. The use of a single molecular assay has most often proven to fall short in discriminating with precision the sources of fecal contamination. This work is a multicenter European ST study to compare bacterial and mitochondrial molecular assays and was set to evaluate the efficiency of nine previously described qPCR assays targeting human-, cow/ruminant-, pig-, and poultry-associated fecal contamination. The study was conducted in five European countries with seven fecal indicators and nine ST assays being evaluated in a total of 77 samples. Animal fecal slurry samples and human and non-human wastewater samples were analyzed. Fecal indicators measured by culture and qPCR were generally ubiquitous in the samples. The ST qPCR markers performed at high levels in terms of quantitative sensitivity and specificity demonstrating large geographical application. Sensitivity varied between 73% (PLBif) and 100% for the majority of the tested markers. On the other hand, specificity ranged from 53% (CWMit) and 97% (BacR). Animal-associated ST qPCR markers were generally detected in concentrations greater than those found for the respective human-associated qPCR markers, with mean concentration for the Bacteroides qPCR markers varying between 8.74 and 7.22 log10 GC/10 mL for the pig and human markers, respectively. Bacteroides spp. and mitochondrial DNA qPCR markers generally presented higher Spearman's rank coefficient in the pooled fecal samples tested, particularly the human fecal markers with a coefficient of 0.79. The evaluation of the performance of Bacteroides spp., mitochondrial DNA and Bifidobacterium spp. ST qPCR markers support advanced pollution monitoring of impaired aquatic environments, aiming to elaborate strategies for target-oriented water quality management.


Asunto(s)
ADN Mitocondrial , Aguas Residuales , Bovinos , Femenino , Animales , Porcinos , Bacteroides/genética , Bioensayo , Calidad del Agua
10.
Commun Biol ; 6(1): 862, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37596339

RESUMEN

Despite the importance of bacteria in aquatic ecosystems and their predictable diversity patterns across space and time, biomonitoring tools for status assessment relying on these organisms are widely lacking. This is partly due to insufficient data and models to identify reliable microbial predictors. Here, we show metabarcoding in combination with multivariate statistics and machine learning allows to identify bacterial bioindicators for existing biological status classification systems. Bacterial beta-diversity dynamics follow environmental gradients and the observed associations highlight potential bioindicators for ecological outcomes. Spatio-temporal links spanning the microbial communities along the river allow accurate prediction of downstream biological status from upstream information. Network analysis on amplicon sequence veariants identify as good indicators genera Fluviicola, Acinetobacter, Flavobacterium, and Rhodoluna, and reveal informational redundancy among taxa, which coincides with taxonomic relatedness. The redundancy among bacterial bioindicators reveals mutually exclusive taxa, which allow accurate biological status modeling using as few as 2-3 amplicon sequence variants. As such our models show that using a few bacterial amplicon sequence variants from globally distributed genera allows for biological status assessment along river systems.


Asunto(s)
Biomarcadores Ambientales , Microbiota , Flavobacterium , Aprendizaje Automático , Microbiota/genética , Ríos
11.
Sci Total Environ ; 894: 164949, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37331393

RESUMEN

The increasing occurrence of antibiotic resistant bacteria poses a threat to global public health. Clinically relevant resistances also spread through the environment. Aquatic ecosystems in particular represent important dispersal pathways. In the past, pristine water resources have not been a study focus, although ingestion of resistant bacteria through water consumption constitutes a potentially important transmission route. This study assessed antibiotic resistances in Escherichia coli populations in two large well-protected and well-managed Austrian karstic spring catchments representing essential groundwater resources for water supply. E. coli were detected seasonally only during the summer period. By screening a representative number of 551 E. coli isolates from 13 sites in two catchments, it could be shown that the prevalence of antibiotic resistance in this study area is low. 3.4 % of the isolates showed resistances to one or two antibiotic classes, 0.5 % were resistant to three antibiotic classes. No resistances to critical and last-line antibiotics were detected. By integrating fecal pollution assessment and microbial source tracking, we could infer that ruminants were the main hosts for antibiotic resistant bacteria in the studied catchment areas. A comparison with other studies on antibiotic resistances in karstic or mountainous springs highlighted the low contamination status of the model catchments studied here, most likely due to the high protection and careful management while other, less pristine catchments showed much higher antibiotic resistances. We demonstrate that studying easily accessible karstic springs allows a holistic view on large catchments concerning the extent and origin of fecal pollution as well as antibiotic resistance. This representative monitoring approach is also in line with the proposed update of the EU Groundwater Directive (GWD).


Asunto(s)
Antibacterianos , Escherichia coli , Animales , Antibacterianos/farmacología , Austria , Ecosistema , Farmacorresistencia Bacteriana , Rumiantes
12.
FEMS Microbiol Rev ; 47(4)2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37286726

RESUMEN

The impacts of nucleic acid-based methods - such as PCR and sequencing - to detect and analyze indicators, genetic markers or molecular signatures of microbial faecal pollution in health-related water quality research were assessed by rigorous literature analysis. A wide range of application areas and study designs has been identified since the first application more than 30 years ago (>1100 publications). Given the consistency of methods and assessment types, we suggest defining this emerging part of science as a new discipline: genetic faecal pollution diagnostics (GFPD) in health-related microbial water quality analysis. Undoubtedly, GFPD has already revolutionized faecal pollution detection (i.e., traditional or alternative general faecal indicator/marker analysis) and microbial source tracking (i.e., host-associated faecal indicator/marker analysis), the current core applications. GFPD is also expanding to many other research areas, including infection and health risk assessment, evaluation of microbial water treatment, and support of wastewater surveillance. In addition, storage of DNA extracts allows for biobanking, which opens up new perspectives. The tools of GFPD can be combined with cultivation-based standardized faecal indicator enumeration, pathogen detection, and various environmental data types, in an integrated data analysis approach. This comprehensive meta-analysis provides the scientific status quo of this field, including trend analyses and literature statistics, outlining identified application areas, and discusses the benefits and challenges of nucleic acid-based analysis in GFPD.


Asunto(s)
Ácidos Nucleicos , Contaminación del Agua , Contaminación del Agua/análisis , Calidad del Agua , Bancos de Muestras Biológicas , Aguas Residuales , Monitoreo del Ambiente/métodos , Monitoreo Epidemiológico Basado en Aguas Residuales , Microbiología del Agua , Heces
13.
Environ Microbiol Rep ; 15(2): 142-152, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36779243

RESUMEN

Vibrio cholerae are natural inhabitants of specific aquatic environments. Strains not belonging to serogroups O1 and O139 are usually unable to produce cholera toxin and cause cholera. However, non-toxigenic V. cholerae (NTVC) are able to cause a variety of mild-to-severe human infections (via seafood consumption or recreational activities). The number of unreported cases is considered substantial, as NTVC infections are not notifiable and physicians are mostly unaware of this pathogen. In the northern hemisphere, NTVC infections have been reported to increase due to global warming. In Eastern Europe, climatic and geological conditions favour the existence of inland water-bodies harbouring NTVC. We thus investigated the occurrence of NTVC in nine Serbian natural and artificial lakes and ponds, many of them used for fishing and bathing. With the exception of one highly saline lake, all investigated water-bodies harboured NTVC, ranging from 5.4 × 101 to 1.86 × 104  CFU and 4.5 × 102 to 5.6 × 106 genomic units per 100 ml. The maximum values observed were in the range of bathing waters in other countries, where infections have been reported. Interestingly, 7 out of 39 fully sequenced presumptive V. cholerae isolates were assigned as V. paracholerae, a recently described sister species of V. cholerae. Some clones and sublineages of both V. cholerae and V. paracholerae were shared by different environments indicating an exchange of strains over long distances. Important pathogenicity factors such as hlyA, toxR, and ompU were present in both species. Seasonal monitoring of ponds/lakes used for recreation in Serbia is thus recommended to be prepared for potential occurrence of infections promoted by climate change-induced rise in water temperatures.


Asunto(s)
Vibrio cholerae , Humanos , Vibrio cholerae/genética , Lagos , Serbia/epidemiología , Estanques , Agua
14.
Sci Total Environ ; 857(Pt 2): 159533, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36270368

RESUMEN

We developed an innovative approach to estimate the occurrence and extent of fecal pollution sources for urban river catchments. The methodology consists of 1) catchment surveys complemented by literature data where needed for probabilistic estimates of daily produced fecal indicator (FIBs, E. coli, enterococci) and zoonotic reference pathogen numbers (Campylobacter, Cryptosporidium and Giardia) excreted by human and animal sources in a river catchment, 2) generating a hypothesis about the dominant sources of fecal pollution and selecting a source targeted monitoring design, and 3) verifying the results by comparing measured concentrations of the informed choice of parameters (i.e. chemical tracers, C. perfringensspores, and host-associated genetic microbial source tracking (MST) markers) in the river, and by multi-parametric correlation analysis. We tested the approach at a study area in Vienna, Austria. The daily produced microbial particle numbers according to the probabilistic estimates indicated that, for the dry weather scenario, the discharge of treated wastewater (WWTP) was the primary contributor to fecal pollution. For the wet weather scenario, 80-99 % of the daily produced FIBs and pathogens resulted from combined sewer overflows (CSOs) according to the probabilistic estimates. When testing our hypothesis in the river, the measured concentrations of the human genetic fecal marker were log10 4 higher than for selected animal genetic fecal markers. Our analyses showed for the first-time statistical relationships between C. perfringens spores (used as conservative microbial tracer for communal sewage) and a human genetic fecal marker (i.e. HF183/BacR287) with the reference pathogen Giardia in river water (Spearman rank correlation: 0.78-0.83, p < 0.05. The developed approach facilitates urban water safety management and provides a robust basis for microbial fate and transport models and microbial infection risk assessment.


Asunto(s)
Criptosporidiosis , Cryptosporidium , Animales , Humanos , Ríos , Contaminación del Agua/análisis , Microbiología del Agua , Escherichia coli , Monitoreo del Ambiente/métodos , Heces/química , Giardia , Agua/análisis
15.
J Contam Hydrol ; 251: 104080, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36179584

RESUMEN

To guarantee proper protection from fecally transmitted pathogen infections, drinking water wells should have a sufficiently large setback distance from potential sources of contamination, e.g. a nearby river. The aim of this study was to provide insight in regards to microbial contamination of groundwater under different flow velocities, which can vary over time due to changes in river stage, season or pumping rate. The effects of these changes, and how they affect removal parameters, are not completely understood. In this study, field tracer tests were carried out in a sandy gravel aquifer near Vienna, Austria to evaluate the ability of subsurface media to attenuate Bacillus subtilis spores, used as a surrogate for Cryptosporidium and Campylobacter. The hydraulic gradient between injection and extraction was controlled by changing the pumping rate (1, 10 l/s) of a pumping well at the test site, building upon previously published work in which tracer tests with a 5 l/s pumping rate were carried out. Attachment and detachment rate coefficients were determined using a HYDRUS-3D model and ranged from 0.12 to 0.76 and 0-0.0013 h-1, respectively. Setback distances were calculated based on the 60-day travel time, as well as a quantitative microbial risk assessment (QMRA) approach, which showed similar results at this site; around 700 m at the highest pumping rate. Removal rates (λ) in the field tests ranged from 0.2 to 0.3 log/m, with lower pumping rates leading to higher removal. It was shown that scale must be taken into consideration when determining λ for the calculation of safe setback distances.


Asunto(s)
Criptosporidiosis , Cryptosporidium , Agua Subterránea , Humanos , Bacillus subtilis , Esporas , Movimientos del Agua
17.
Sci Total Environ ; 843: 156964, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35764146

RESUMEN

Wastewater-based epidemiology (WBE) surveillance of COVID-19 and other future outbreaks is a challenge for developing countries as most households are not connected to a sewerage system. In December 2019, SARS-CoV-2 RNA was detected in the Danube River at a site severely affected by wastewaters from Belgrade. Rivers are much more complex systems than wastewater systems, and efforts are needed to address all the factors influencing the adoption of WBE as an alternative to targeting raw wastewater. Our objective was to provide a more detailed insight into the potential of SARS-CoV-2 surveillance in Serbian surface waters for epidemiological purposes. Water samples were collected at 12 sites along the Sava and Danube rivers in Belgrade during the fourth COVID-19 wave in Serbia that started in late February 2021. RNA was concentrated using Amicon Ultra-15 centrifugal filters and quantified using RT-qPCR with primer sets targeting nucleocapsid (N1 and N2) and envelope (E) protein genes. Microbiological (faecal indicator bacteria and human and animal genetic faecal source tracking markers), epidemiological, physicochemical and hydromorphological parameters were analysed in parallel. From 44 samples, SARS-CoV-2 RNA was detected in 31, but only at 4 concentrations above the level of quantification (ranging from 8.47 × 103 to 2.07 × 104 gc/L). The results indicated that surveillance of SARS-CoV-2 RNA in surface waters as ultimate recipients could be used as an epidemiological early-warning tool in countries lacking wastewater treatment and proper sewerage infrastructure. The performance of the applied approach, including advanced sampling site characterization to trace and identify sites with significant raw sewage influence from human populations, could be further improved by adaptation of the methodology for processing higher volumes of samples and enrichment factors, which should provide the quantitative instead of qualitative data needed for WBE.


Asunto(s)
COVID-19 , Purificación del Agua , COVID-19/epidemiología , Humanos , ARN Viral , SARS-CoV-2/genética , Aguas Residuales , Monitoreo Epidemiológico Basado en Aguas Residuales
18.
Sci Total Environ ; 805: 149877, 2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-34818780

RESUMEN

Wastewater surveillance for pathogens using reverse transcription-polymerase chain reaction (RT-PCR) is an effective and resource-efficient tool for gathering community-level public health information, including the incidence of coronavirus disease-19 (COVID-19). Surveillance of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) in wastewater can potentially provide an early warning signal of COVID-19 infections in a community. The capacity of the world's environmental microbiology and virology laboratories for SARS-CoV-2 RNA characterization in wastewater is increasing rapidly. However, there are no standardized protocols or harmonized quality assurance and quality control (QA/QC) procedures for SARS-CoV-2 wastewater surveillance. This paper is a technical review of factors that can cause false-positive and false-negative errors in the surveillance of SARS-CoV-2 RNA in wastewater, culminating in recommended strategies that can be implemented to identify and mitigate some of these errors. Recommendations include stringent QA/QC measures, representative sampling approaches, effective virus concentration and efficient RNA extraction, PCR inhibition assessment, inclusion of sample processing controls, and considerations for RT-PCR assay selection and data interpretation. Clear data interpretation guidelines (e.g., determination of positive and negative samples) are critical, particularly when the incidence of SARS-CoV-2 in wastewater is low. Corrective and confirmatory actions must be in place for inconclusive results or results diverging from current trends (e.g., initial onset or reemergence of COVID-19 in a community). It is also prudent to perform interlaboratory comparisons to ensure results' reliability and interpretability for prospective and retrospective analyses. The strategies that are recommended in this review aim to improve SARS-CoV-2 characterization and detection for wastewater surveillance applications. A silver lining of the COVID-19 pandemic is that the efficacy of wastewater surveillance continues to be demonstrated during this global crisis. In the future, wastewater should also play an important role in the surveillance of a range of other communicable diseases.


Asunto(s)
COVID-19 , Pandemias , Humanos , Estudios Prospectivos , ARN Viral , Reproducibilidad de los Resultados , Estudios Retrospectivos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , SARS-CoV-2 , Aguas Residuales , Monitoreo Epidemiológico Basado en Aguas Residuales
19.
Front Microbiol ; 12: 660566, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34745021

RESUMEN

Molecular diagnostic methods are increasingly applied for food and environmental analysis. Since several steps are involved in sample processing which can affect the outcome (e.g., adhesion of DNA to the sample matrix, inefficient precipitation of DNA, pipetting errors and (partial) loss of the DNA pellet during DNA isolation), quality control is essential at all processing levels. In soil microbiology, particular attention has been paid to the inorganic component of the sample matrix affecting DNA extractability. In water quality testing, however, this aspect has mostly been neglected so far, although it is conceivable that these mechanisms have a similar impact. The present study was therefore dedicated to investigate possible matrix effects on results of water quality analysis. Field testing in an aquatic environment with pronounced chemo-physical gradients [total suspended solids (TSS), inorganic turbidity, total organic carbon (TOC), and conductivity] indicated a negative association between DNA extractability (using a standard phenol/chloroform extraction procedure) and turbidity (spearman ρ = -0.72, p < 0.001, n = 21). Further detailed laboratory experiments on sediment suspensions confirmed the hypothesis of inorganic turbidity being the main driver for reduced DNA extractability. The observed effects, as known from soil samples, were also indicated to result from competitive effects for free charges on clay minerals, leading to adsorption of DNA to these inorganic particles. A protocol modification by supplementing the extraction buffer with salmon sperm DNA, to coat charged surfaces prior to cell lysis, was then applied on environmental water samples and compared to the standard protocol. At sites characterized by high inorganic turbidity, DNA extractability was significantly improved or made possible in the first place by applying the adapted protocol. This became apparent from intestinal enterococci and microbial source tracking (MST)-marker levels measured by quantitative polymerase chain reaction (qPCR) (100 to 10,000-fold median increase in target concentrations). The present study emphasizes the need to consider inorganic turbidity as a potential loss factor in DNA extraction from water-matrices. Negligence of these effects can lead to a massive bias, by up to several orders of magnitude, in the results of molecular MST and fecal pollution diagnostics.

20.
Nat Microbiol ; 6(11): 1443-1454, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34702978

RESUMEN

Commonly used 16S rRNA gene primers do not detect the full range of archaeal diversity present in the vertebrate gut. As a result, several questions regarding the archaeal component of the gut microbiota remain, including which Archaea are host-associated, the specificities of such associations and the major factors influencing archaeal diversity. Using 16S rRNA gene amplicon sequencing with primers that specifically target Archaea, we obtained sufficient sequence data from 185 gastrointestinal samples collected from 110 vertebrate species that span five taxonomic classes (Mammalia, Aves, Reptilia, Amphibia and Actinopterygii), of which the majority were wild. We provide evidence for previously undescribed Archaea-host associations, including Bathyarchaeia and Methanothermobacter, the latter of which was prevalent among Aves and relatively abundant in species with higher body temperatures, although this association could not be decoupled from host phylogeny. Host phylogeny explained archaeal diversity more strongly than diet, while specific taxa were associated with both factors, and cophylogeny was significant and strongest for mammalian herbivores. Methanobacteria was the only class predicted to be present in the last common ancestors of mammals and all host species. Further analysis indicated that Archaea-Bacteria interactions have a limited effect on archaeal diversity. These findings expand our current understanding of Archaea-vertebrate associations.


Asunto(s)
Archaea/genética , Archaea/fisiología , Microbioma Gastrointestinal , Filogenia , Vertebrados/clasificación , Vertebrados/microbiología , Animales , Archaea/clasificación , Archaea/aislamiento & purificación , Biodiversidad , Aves/microbiología , ADN de Archaea/genética , Especificidad del Huésped , Humanos , ARN Ribosómico 16S/genética , Reptiles/microbiología , Análisis de Secuencia de ADN , Vertebrados/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA