Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Alzheimers Res Ther ; 16(1): 130, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886831

RESUMEN

BACKGROUND: There is good evidence that elevated amyloid-ß (Aß) positron emission tomography (PET) signal is associated with cognitive decline in clinically normal (CN) individuals. However, it is less well established whether there is an association between the Aß burden and decline in daily living activities in this population. Moreover, Aß-PET Centiloids (CL) thresholds that can optimally predict functional decline have not yet been established. METHODS: Cross-sectional and longitudinal analyses over a mean three-year timeframe were performed on the European amyloid-PET imaging AMYPAD-PNHS dataset that phenotypes 1260 individuals, including 1032 CN individuals and 228 participants with questionable functional impairment. Amyloid-PET was assessed continuously on the Centiloid (CL) scale and using Aß groups (CL < 12 = Aß-, 12 ≤ CL ≤ 50 = Aß-intermediate/Aß± , CL > 50 = Aß+). Functional abilities were longitudinally assessed using the Clinical Dementia Rating (Global-CDR, CDR-SOB) and the Amsterdam Instrumental Activities of Daily Living Questionnaire (A-IADL-Q). The Global-CDR was available for the 1260 participants at baseline, while baseline CDR-SOB and A-IADL-Q scores and longitudinal functional data were available for different subsamples that had similar characteristics to those of the entire sample. RESULTS: Participants included 765 Aß- (61%, Mdnage = 66.0, IQRage = 61.0-71.0; 59% women), 301 Aß± (24%; Mdnage = 69.0, IQRage = 64.0-75.0; 53% women) and 194 Aß+ individuals (15%, Mdnage = 73.0, IQRage = 68.0-78.0; 53% women). Cross-sectionally, CL values were associated with CDR outcomes. Longitudinally, baseline CL values predicted prospective changes in the CDR-SOB (bCL*Time = 0.001/CL/year, 95% CI [0.0005,0.0024], p = .003) and A-IADL-Q (bCL*Time = -0.010/CL/year, 95% CI [-0.016,-0.004], p = .002) scores in initially CN participants. Increased clinical progression (Global-CDR > 0) was mainly observed in Aß+ CN individuals (HRAß+ vs Aß- = 2.55, 95% CI [1.16,5.60], p = .020). Optimal thresholds for predicting decline were found at 41 CL using the CDR-SOB (bAß+ vs Aß- = 0.137/year, 95% CI [0.069,0.206], p < .001) and 28 CL using the A-IADL-Q (bAß+ vs Aß- = -0.693/year, 95% CI [-1.179,-0.208], p = .005). CONCLUSIONS: Amyloid-PET quantification supports the identification of CN individuals at risk of functional decline. TRIAL REGISTRATION: The AMYPAD PNHS is registered at www.clinicaltrialsregister.eu with the EudraCT Number: 2018-002277-22.


Asunto(s)
Actividades Cotidianas , Péptidos beta-Amiloides , Tomografía de Emisión de Positrones , Humanos , Tomografía de Emisión de Positrones/métodos , Femenino , Masculino , Estudios Transversales , Estudios Longitudinales , Anciano , Péptidos beta-Amiloides/metabolismo , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/metabolismo , Persona de Mediana Edad , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Anciano de 80 o más Años
2.
Neurology ; 103(1): e209419, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38862136

RESUMEN

BACKGROUND AND OBJECTIVES: Discordance between CSF and PET biomarkers of ß-amyloid (Aß) might reflect an imbalance between soluble and aggregated species, possibly reflecting disease heterogeneity. Previous studies generally used binary cutoffs to assess discrepancies in CSF/PET biomarkers, resulting in a loss of information on the extent of discordance. In this study, we (1) jointly modeled Aß-CSF/PET data to derive a continuous measure of the imbalance between soluble and fibrillar pools of Aß, (2) investigated factors contributing to this imbalance, and (3) examined associations with cognitive trajectories. METHODS: Across 822 cognitively unimpaired (n = 261) and cognitively impaired (n = 561) Alzheimer's Disease Neuroimaging Initiative individuals (384 [46.7%] females, mean age 73.0 ± 7.4 years), we fitted baseline CSF-Aß42 and global Aß-PET to a hyperbolic regression model, deriving a participant-specific Aß-aggregation score (standardized residuals); negative values represent more soluble relative to aggregated Aß and positive values more aggregated relative to soluble Aß. Using linear models, we investigated whether methodological factors, demographics, CSF biomarkers, and vascular burden contributed to Aß-aggregation scores. With linear mixed models, we assessed whether Aß-aggregation scores were predictive of cognitive functioning. Analyses were repeated in an early independent validation cohort of 383 Amyloid Imaging to Prevent Alzheimer's Disease Prognostic and Natural History Study individuals (224 [58.5%] females, mean age 65.2 ± 6.9 years). RESULTS: The imbalance model could be fit (pseudo-R2 = 0.94) in both cohorts, across CSF kits and PET tracers. Although no associations were observed with the main methodological factors, lower Aß-aggregation scores were associated with larger ventricular volume (ß = 0.13, p < 0.001), male sex (ß = -0.18, p = 0.019), and homozygous APOE-ε4 carriership (ß = -0.56, p < 0.001), whereas higher scores were associated with increased uncorrected CSF p-tau (ß = 0.17, p < 0.001) and t-tau (ß = 0.16, p < 0.001), better baseline executive functioning (ß = 0.12, p < 0.001), and slower global cognitive decline (ß = 0.14, p = 0.006). In the validation cohort, we replicated the associations with APOE-ε4, CSF t-tau, and, although modestly, with cognition. DISCUSSION: We propose a novel continuous model of Aß CSF/PET biomarker imbalance, accurately describing heterogeneity in soluble vs aggregated Aß pools in 2 independent cohorts across the full Aß continuum. Aß-aggregation scores were consistently associated with genetic and AD-associated CSF biomarkers, possibly reflecting disease heterogeneity beyond methodological influences.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Biomarcadores , Tomografía de Emisión de Positrones , Humanos , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/diagnóstico por imagen , Femenino , Masculino , Péptidos beta-Amiloides/líquido cefalorraquídeo , Anciano , Biomarcadores/líquido cefalorraquídeo , Fragmentos de Péptidos/líquido cefalorraquídeo , Anciano de 80 o más Años , Disfunción Cognitiva/líquido cefalorraquídeo , Disfunción Cognitiva/diagnóstico por imagen , Persona de Mediana Edad
3.
Alzheimers Dement ; 20(5): 3429-3441, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38574374

RESUMEN

INTRODUCTION: To support clinical trial designs focused on early interventions, our study determined reliable early amyloid-ß (Aß) accumulation based on Centiloids (CL) in pre-dementia populations. METHODS: A total of 1032 participants from the Amyloid Imaging to Prevent Alzheimer's Disease-Prognostic and Natural History Study (AMYPAD-PNHS) and Insight46 who underwent [18F]flutemetamol, [18F]florbetaben or [18F]florbetapir amyloid-PET were included. A normative strategy was used to define reliable accumulation by estimating the 95th percentile of longitudinal measurements in sub-populations (NPNHS = 101/750, NInsight46 = 35/382) expected to remain stable over time. The baseline CL threshold that optimally predicts future accumulation was investigated using precision-recall analyses. Accumulation rates were examined using linear mixed-effect models. RESULTS: Reliable accumulation in the PNHS was estimated to occur at >3.0 CL/year. Baseline CL of 16 [12,19] best predicted future Aß-accumulators. Rates of amyloid accumulation were tracer-independent, lower for APOE ε4 non-carriers, and for subjects with higher levels of education. DISCUSSION: Our results support a 12-20 CL window for inclusion into early secondary prevention studies. Reliable accumulation definition warrants further investigations.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Compuestos de Anilina , Tomografía de Emisión de Positrones , Humanos , Masculino , Femenino , Anciano , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Pronóstico , Persona de Mediana Edad , Estudios Longitudinales , Estilbenos , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Benzotiazoles
4.
J Nucl Med ; 65(5): 670-678, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38514082

RESUMEN

Since the development of amyloid tracers for PET imaging, there has been interest in quantifying amyloid burden in the brains of patients with Alzheimer disease. Quantitative amyloid PET imaging is poised to become a valuable approach in disease staging, theranostics, monitoring, and as an outcome measure for interventional studies. Yet, there are significant challenges and hurdles to overcome before it can be implemented into widespread clinical practice. On November 17, 2022, the U.S. Food and Drug Administration, Society of Nuclear Medicine and Molecular Imaging, and Medical Imaging and Technology Alliance cosponsored a public workshop comprising experts from academia, industry, and government agencies to discuss the role of quantitative brain amyloid PET imaging in staging, prognosis, and longitudinal assessment of Alzheimer disease. The workshop discussed a range of topics, including available radiopharmaceuticals for amyloid imaging; the methodology, metrics, and analytic validity of quantitative amyloid PET imaging; its use in disease staging, prognosis, and monitoring of progression; and challenges facing the field. This report provides a high-level summary of the presentations and the discussion.


Asunto(s)
Amiloide , Encéfalo , Tomografía de Emisión de Positrones , Humanos , Tomografía de Emisión de Positrones/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Amiloide/metabolismo , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo
5.
Neurology ; 102(6): e208053, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38377442

RESUMEN

OBJECTIVES: Higher-educated patients with Alzheimer disease (AD) can harbor greater neuropathologic burden than those with less education despite similar symptom severity. In this study, we assessed whether this observation is also present in potential preclinical AD stages, namely in individuals with subjective cognitive decline and clinical features increasing AD likelihood (SCD+). METHODS: Amyloid-PET information ([18F]Flutemetamol or [18F]Florbetaben) of individuals with SCD+, mild cognitive impairment (MCI), and AD were retrieved from the AMYPAD-DPMS cohort, a multicenter randomized controlled study. Group classification was based on the recommendations by the SCD-I and NIA-AA working groups. Amyloid PET images were acquired within 8 months after initial screening and processed with AMYPYPE. Amyloid load was based on global Centiloid (CL) values. Educational level was indexed by formal schooling and subsequent higher education in years. Using linear regression analysis, the main effect of education on CL values was tested across the entire cohort, followed by the assessment of an education-by-diagnostic-group interaction (covariates: age, sex, and recruiting memory clinic). To account for influences of non-AD pathology and comorbidities concerning the tested amyloid-education association, we compared white matter hyperintensity (WMH) severity, cardiovascular events, depression, and anxiety history between lower-educated and higher-educated groups within each diagnostic category using the Fisher exact test or χ2 test. Education groups were defined using a median split on education (Md = 13 years) in a subsample of the initial cohort, for whom this information was available. RESULTS: Across the cohort of 212 individuals with SCD+ (M(Age) = 69.17 years, F 42.45%), 258 individuals with MCI (M(Age) = 72.93, F 43.80%), and 195 individuals with dementia (M(Age) = 74.07, F 48.72%), no main effect of education (ß = 0.52, 95% CI -0.30 to 1.58), but a significant education-by-group interaction on CL values, was found (p = 0.024) using linear regression modeling. This interaction was driven by a negative association of education and CL values in the SCD+ group (ß = -0.11, 95% CI -4.85 to -0.21) and a positive association in the MCI group (ß = 0.15, 95% CI 0.79-5.22). No education-dependent differences in terms of WMH severity and comorbidities were found in the subsample (100 cases with SCD+, 97 cases with MCI, 72 cases with dementia). DISCUSSION: Education may represent a factor oppositely modulating subjective awareness in preclinical stages and objective severity of ongoing neuropathologic processes in clinical stages.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Anciano , Femenino , Humanos , Masculino , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/epidemiología , Amiloide , Péptidos beta-Amiloides , Proteínas Amiloidogénicas , Biomarcadores , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/epidemiología , Escolaridad , Estudios Longitudinales , Tomografía de Emisión de Positrones , Estudios Multicéntricos como Asunto , Ensayos Clínicos Controlados Aleatorios como Asunto
6.
Eur J Nucl Med Mol Imaging ; 51(3): 734-748, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37897616

RESUMEN

PURPOSE: To investigate the impact of reduced injected doses on the quantitative and qualitative assessment of the amyloid PET tracers [18F]flutemetamol and [18F]florbetaben. METHODS: Cognitively impaired and unimpaired individuals (N = 250, 36% Aß-positive) were included and injected with [18F]flutemetamol (N = 175) or [18F]florbetaben (N = 75). PET scans were acquired in list-mode (90-110 min post-injection) and reduced-dose images were simulated to generate images of 75, 50, 25, 12.5 and 5% of the original injected dose. Images were reconstructed using vendor-provided reconstruction tools and visually assessed for Aß-pathology. SUVRs were calculated for a global cortical and three smaller regions using a cerebellar cortex reference tissue, and Centiloid was computed. Absolute and percentage differences in SUVR and CL were calculated between dose levels, and the ability to discriminate between Aß- and Aß + scans was evaluated using ROC analyses. Finally, intra-reader agreement between the reduced dose and 100% images was evaluated. RESULTS: At 5% injected dose, change in SUVR was 3.72% and 3.12%, with absolute change in Centiloid 3.35CL and 4.62CL, for [18F]flutemetamol and [18F]florbetaben, respectively. At 12.5% injected dose, percentage change in SUVR and absolute change in Centiloid were < 1.5%. AUCs for discriminating Aß- from Aß + scans were high (AUC ≥ 0.94) across dose levels, and visual assessment showed intra-reader agreement of > 80% for both tracers. CONCLUSION: This proof-of-concept study showed that for both [18F]flutemetamol and [18F]florbetaben, adequate quantitative and qualitative assessments can be obtained at 12.5% of the original injected dose. However, decisions to reduce the injected dose should be made considering the specific clinical or research circumstances.


Asunto(s)
Enfermedad de Alzheimer , Compuestos de Anilina , Estilbenos , Humanos , Benzotiazoles , Amiloide/metabolismo , Tomografía de Emisión de Positrones/métodos , Enfermedad de Alzheimer/diagnóstico por imagen , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo
7.
Clin Nucl Med ; 49(1): 1-8, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38048354

RESUMEN

PURPOSE: The CT-based regional direct comparison Centiloid (dcCL) method was developed to harmonize and quantify regional ß-amyloid (Aß) burden. In the present study, we aimed to investigate correlations between the CT-based regional dcCL scales and Aß pathological burdens and to validate the clinical utility using thresholds derived from pathological assessment. PATIENTS AND METHODS: We included a pathological cohort of 63 cases and a clinical cohort of 4062 participants, and obtained modified Consortium to Establish a Registry for Alzheimer's Disease criteria (mCERAD) scores by assessment of neuritic plaque burdens in multiple areas of each cortical region. PET and CT images were processed using the CT-based regional dcCL method to calculate scales in 6 distinct regions. RESULTS: The CT-based regional dcCL scales were correlated with neuritic plaque burdens represented by mCERAD scores, globally and regionally ( r = 0.56~0.76). In addition, striatum dcCL scales reflected Aß involvement in the striatum ( P < 0.001). The regional dcCL scales could predict significant Aß deposition in specific brain regions with high accuracy: area under the receiver operating characteristic curve of 0.81-0.97 with an mCERAD cutoff of 1.5 and area under the receiver operating characteristic curve of 0.88-0.93 with an mCERAD cutoff of 0.5. When applying the dcCL thresholds of 1.5 mCERAD scores, the G(-)R(+) group showed lower performances in memory and global cognitive functions and had less hippocampal volume compared with the G(-)R(-) group ( P < 0.001). However, when applying the dcCL thresholds of 0.5 mCERAD scores, there were no differences in the global cognitive functions between the 2 groups. CONCLUSIONS: The thresholds of regional dcCL scales derived from pathological assessments might provide clinicians with a better understanding of biomarker-guided diagnosis and distinguishable clinical phenotypes, which are particularly useful when harmonizing different PET ligands with only PET/CT.


Asunto(s)
Enfermedad de Alzheimer , Tomografía Computarizada por Tomografía de Emisión de Positrones , Humanos , Placa Amiloide/patología , Enfermedad de Alzheimer/diagnóstico , Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Tomografía de Emisión de Positrones/métodos
8.
Alzheimers Res Ther ; 15(1): 189, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37919783

RESUMEN

BACKGROUND: The mismatch between the limited availability versus the high demand of participants who are in the pre-dementia phase of Alzheimer's disease (AD) is a bottleneck for clinical studies in AD. Nevertheless, potential enrollment barriers in the pre-dementia population are relatively under-reported. In a large European longitudinal biomarker study (the AMYPAD-PNHS), we investigated main enrollment barriers in individuals with no or mild symptoms recruited from research and clinical parent cohorts (PCs) of ongoing observational studies. METHODS: Logistic regression was used to predict study refusal based on sex, age, education, global cognition (MMSE), family history of dementia, and number of prior study visits. Study refusal rates and categorized enrollment barriers were compared between PCs using chi-squared tests. RESULTS: 535/1856 (28.8%) of the participants recruited from ongoing studies declined participation in the AMYPAD-PNHS. Only for participants recruited from clinical PCs (n = 243), a higher MMSE-score (ß = - 0.22, OR = 0.80, p < .05), more prior study visits (ß = - 0.93, OR = 0.40, p < .001), and positive family history of dementia (ß = 2.08, OR = 8.02, p < .01) resulted in lower odds on study refusal. General study burden was the main enrollment barrier (36.1%), followed by amyloid-PET related burden (PCresearch = 27.4%, PCclinical = 9.0%, X2 = 10.56, p = .001), and loss of research interest (PCclinical = 46.3%, PCresearch = 16.5%, X2 = 32.34, p < .001). CONCLUSIONS: The enrollment rate for the AMYPAD-PNHS was relatively high, suggesting an advantage of recruitment via ongoing studies. In this observational cohort, study burden reduction and tailored strategies may potentially improve participant enrollment into trial readiness cohorts such as for phase-3 early anti-amyloid intervention trials. The AMYPAD-PNHS (EudraCT: 2018-002277-22) was approved by the ethical review board of the VU Medical Center (VUmc) as the Sponsor site and in every affiliated site.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/epidemiología , Amiloide , Péptidos beta-Amiloides , Proteínas Amiloidogénicas , Cognición , Estudios Longitudinales , Tomografía de Emisión de Positrones , Masculino , Femenino
9.
Alzheimers Res Ther ; 15(1): 207, 2023 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012799

RESUMEN

BACKGROUND: Previous studies demonstrated increases in diagnostic confidence and change in patient management after amyloid-PET. However, studies investigating longitudinal outcomes over an extended period of time are limited. Therefore, we aimed to investigate clinical outcomes up to 9 years after amyloid-PET to support the clinical validity of the imaging technique. METHODS: We analyzed longitudinal data from 200 patients (Mage = 61.8, 45.5% female, MMMSE = 23.3) suspected of early-onset dementia that underwent [18F]flutemetamol-PET. Baseline amyloid status was determined through visual read (VR). Information on mortality was available with a mean follow-up of 6.7 years (range = 1.1-9.3). In a subset of 108 patients, longitudinal cognitive scores and clinical etiological diagnosis (eDx) at least 1 year after amyloid-PET acquisition were available (M = 3.06 years, range = 1.00-7.02). VR - and VR + patients were compared on mortality rates with Cox Hazard's model, prevalence of stable eDx using chi-square test, and longitudinal cognition with linear mixed models. Neuropathological data was available for 4 patients (mean delay = 3.59 ± 1.82 years, range = 1.2-6.3). RESULTS: At baseline, 184 (92.0%) patients were considered to have dementia. The majority of VR + patients had a primary etiological diagnosis of AD (122/128, 95.3%), while the VR - group consisted mostly of non-AD etiologies, most commonly frontotemporal lobar degeneration (30/72, 40.2%). Overall mortality rate was 48.5% and did not differ between VR - and VR + patients. eDx at follow-up was consistent with baseline diagnosis for 92/108 (85.2%) patients, with most changes observed in VR - cases (VR - = 14/35, 40% vs VR + = 2/73, 2.7%, χ2 = 26.03, p < 0.001), who at no time received an AD diagnosis. VR + patients declined faster than VR - patients based on MMSE (ß = - 1.17, p = 0.004), episodic memory (ß = - 0.78, p = 0.003), fluency (ß = - 1.44, p < 0.001), and attention scores (ß = 16.76, p = 0.03). Amyloid-PET assessment was in line with post-mortem confirmation in all cases; two cases were VR + and showed widespread AD pathology, while the other two cases were VR - and showed limited amyloid pathology. CONCLUSION: In a symptomatic population, we observed that amyloid-status did not impact mortality rates, but is predictive of cognitive functioning over time across several domains. Also, we show particular validity for a negative amyloid-PET assessment, as these patients did not receive an AD diagnosis at follow-up.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Femenino , Masculino , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Encéfalo/metabolismo , Benzotiazoles , Compuestos de Anilina , Amiloide/metabolismo , Proteínas Amiloidogénicas , Tomografía de Emisión de Positrones/métodos , Péptidos beta-Amiloides/metabolismo
10.
EJNMMI Phys ; 10(1): 68, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37906338

RESUMEN

BACKGROUND: Image harmonization has been proposed to minimize heterogeneity in brain PET scans acquired in multi-center studies. However, standard validated methods and software tools are lacking. Here, we assessed the performance of a framework for the harmonization of brain PET scans in a multi-center European clinical trial. METHOD: Hoffman 3D brain phantoms were acquired in 28 PET systems and reconstructed using site-specific settings. Full Width at Half Maximum (FWHM) of the Effective Image Resolution (EIR) and harmonization kernels were estimated for each scan. The target EIR was selected as the coarsest EIR in the imaging network. Using "Hoffman 3D brain Analysis tool," indicators of image quality were calculated before and after the harmonization: The Coefficient of Variance (COV%), Gray Matter Recovery Coefficient (GMRC), Contrast, Cold-Spot RC, and left-to-right GMRC ratio. A COV% ≤ 15% and Contrast ≥ 2.2 were set as acceptance criteria. The procedure was repeated to achieve a 6-mm target EIR in a subset of scans. The method's robustness against typical dose-calibrator-based errors was assessed. RESULTS: The EIR across systems ranged from 3.3 to 8.1 mm, and an EIR of 8 mm was selected as the target resolution. After harmonization, all scans met acceptable image quality criteria, while only 13 (39.4%) did before. The harmonization procedure resulted in lower inter-system variability indicators: Mean ± SD COV% (from 16.97 ± 6.03 to 7.86 ± 1.47%), GMRC Inter-Quartile Range (0.040-0.012), and Contrast SD (0.14-0.05). Similar results were obtained with a 6-mm FWHM target EIR. Errors of ± 10% in the DRO activity resulted in differences below 1 mm in the estimated EIR. CONCLUSION: Harmonizing the EIR of brain PET scans significantly reduced image quality variability while minimally affecting quantitative accuracy. This method can be used prospectively for harmonizing scans to target sharper resolutions and is robust against dose-calibrator errors. Comparable image quality is attainable in brain PET multi-center studies while maintaining quantitative accuracy.

11.
Neuroimage ; 280: 120313, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37595816

RESUMEN

PURPOSE: Positron emission tomography (PET) provides in vivo quantification of amyloid-ß (Aß) pathology. Established methods for assessing Aß burden can be affected by physiological and technical factors. Novel, data-driven metrics have been developed to account for these sources of variability. We aimed to evaluate the performance of four of these amyloid PET metrics against conventional techniques, using a common set of criteria. METHODS: Three cohorts were used for evaluation: Insight 46 (N=464, [18F]florbetapir), AIBL (N=277, [18F]flutemetamol), and an independent test-retest data (N=10, [18F]flutemetamol). Established metrics of amyloid tracer uptake included the Centiloid (CL) and where dynamic data was available, the non-displaceable binding potential (BPND). The four data-driven metrics computed were the amyloid load (Aß load), the Aß-PET pathology accumulation index (Aß index), the Centiloid derived from non-negative matrix factorisation (CLNMF), and the amyloid pattern similarity score (AMPSS). These metrics were evaluated using reliability and repeatability in test-retest data, associations with BPND and CL, variability of the rate of change and sample size estimates to detect a 25% slowing in Aß accumulation. RESULTS: All metrics showed good reliability. Aß load, Aß index and CLNMF were strong associated with the BPND. The associations with CL suggest that cross-sectional measures of CLNMF, Aß index and Aß load are robust across studies. Sample size estimates for secondary prevention trial scenarios were the lowest for CLNMF and Aß load compared to the CL. CONCLUSION: Among the novel data-driven metrics evaluated, the Aß load, the Aß index and the CLNMF can provide comparable performance to more established quantification methods of Aß PET tracer uptake. The CLNMF and Aß load could offer a more precise alternative to CL, although further studies in larger cohorts should be conducted.


Asunto(s)
Péptidos beta-Amiloides , Benchmarking , Humanos , Estudios Transversales , Reproducibilidad de los Resultados , Tomografía de Emisión de Positrones
12.
Alzheimers Dement ; 19(11): 5232-5252, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37303269

RESUMEN

Deposition of amyloid and tau pathology can be quantified in vivo using positron emission tomography (PET). Accurate longitudinal measurements of accumulation from these images are critical for characterizing the start and spread of the disease. However, these measurements are challenging; precision and accuracy can be affected substantially by various sources of errors and variability. This review, supported by a systematic search of the literature, summarizes the current design and methodologies of longitudinal PET studies. Intrinsic, biological causes of variability of the Alzheimer's disease (AD) protein load over time are then detailed. Technical factors contributing to longitudinal PET measurement uncertainty are highlighted, followed by suggestions for mitigating these factors, including possible techniques that leverage shared information between serial scans. Controlling for intrinsic variability and reducing measurement uncertainty in longitudinal PET pipelines will provide more accurate and precise markers of disease evolution, improve clinical trial design, and aid therapy response monitoring.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/patología , Proteínas tau/metabolismo , Péptidos beta-Amiloides/metabolismo , Tomografía de Emisión de Positrones/métodos , Proteínas Amiloidogénicas/metabolismo , Disfunción Cognitiva/metabolismo , Encéfalo/patología
13.
EJNMMI Res ; 13(1): 48, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37225974

RESUMEN

RATIONALE: Amyloid-ß (Aß) pathology is one of the earliest detectable brain changes in Alzheimer's disease pathogenesis. In clinical practice, trained readers will visually categorise positron emission tomography (PET) scans as either Aß positive or negative. However, adjunct quantitative analysis is becoming more widely available, where regulatory approved software can currently generate metrics such as standardised uptake value ratios (SUVr) and individual Z-scores. Therefore, it is of direct value to the imaging community to assess the compatibility of commercially available software packages. In this collaborative project, the compatibility of amyloid PET quantification was investigated across four regulatory approved software packages. In doing so, the intention is to increase visibility and understanding of clinically relevant quantitative methods. METHODS: Composite SUVr using the pons as the reference region was generated from [18F]flutemetamol (GE Healthcare) PET in a retrospective cohort of 80 amnestic mild cognitive impairment (aMCI) patients (40 each male/female; mean age = 73 years, SD = 8.52). Based on previous autopsy validation work, an Aß positivity threshold of ≥ 0.6 SUVrpons was applied. Quantitative results from MIM Software's MIMneuro, Syntermed's NeuroQ, Hermes Medical Solutions' BRASS and GE Healthcare's CortexID were analysed using intraclass correlation coefficient (ICC), percentage agreement around the Aß positivity threshold and kappa scores. RESULTS: Using an Aß positivity threshold of ≥ 0.6 SUVrpons, 95% agreement was achieved across the four software packages. Two patients were narrowly classed as Aß negative by one software package but positive by the others, and two patients vice versa. All kappa scores around the same Aß positivity threshold, both combined (Fleiss') and individual software pairings (Cohen's), were ≥ 0.9 signifying "almost perfect" inter-rater reliability. Excellent reliability was found between composite SUVr measurements for all four software packages, with an average measure ICC of 0.97 and 95% confidence interval of 0.957-0.979. Correlation coefficient analysis between the two software packages reporting composite z-scores was strong (r2 = 0.98). CONCLUSION: Using an optimised cortical mask, regulatory approved software packages provided highly correlated and reliable quantification of [18F]flutemetamol amyloid PET with a ≥ 0.6 SUVrpons positivity threshold. In particular, this work could be of interest to physicians performing routine clinical imaging rather than researchers performing more bespoke image analysis. Similar analysis is encouraged using other reference regions as well as the Centiloid scale, when it has been implemented by more software packages.

14.
JAMA Neurol ; 80(6): 548-557, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37155177

RESUMEN

Importance: Amyloid positron emission tomography (PET) allows the direct assessment of amyloid deposition, one of the main hallmarks of Alzheimer disease. However, this technique is currently not widely reimbursed because of the lack of appropriately designed studies demonstrating its clinical effect. Objective: To assess the clinical effect of amyloid PET in memory clinic patients. Design, Setting, and Participants: The AMYPAD-DPMS is a prospective randomized clinical trial in 8 European memory clinics. Participants were allocated (using a minimization method) to 3 study groups based on the performance of amyloid PET: arm 1, early in the diagnostic workup (within 1 month); arm 2, late in the diagnostic workup (after a mean [SD] 8 [2] months); or arm 3, if and when the managing physician chose. Participants were patients with subjective cognitive decline plus (SCD+; SCD plus clinical features increasing the likelihood of preclinical Alzheimer disease), mild cognitive impairment (MCI), or dementia; they were assessed at baseline and after 3 months. Recruitment took place between April 16, 2018, and October 30, 2020. Data analysis was performed from July 2022 to January 2023. Intervention: Amyloid PET. Main Outcome and Measure: The main outcome was the difference between arm 1 and arm 2 in the proportion of participants receiving an etiological diagnosis with a very high confidence (ie, ≥90% on a 50%-100% visual numeric scale) after 3 months. Results: A total of 844 participants were screened, and 840 were enrolled (291 in arm 1, 271 in arm 2, 278 in arm 3). Baseline and 3-month visit data were available for 272 participants in arm 1 and 260 in arm 2 (median [IQR] age: 71 [65-77] and 71 [65-77] years; 150/272 male [55%] and 135/260 male [52%]; 122/272 female [45%] and 125/260 female [48%]; median [IQR] education: 12 [10-15] and 13 [10-16] years, respectively). After 3 months, 109 of 272 participants (40%) in arm 1 had a diagnosis with very high confidence vs 30 of 260 (11%) in arm 2 (P < .001). This was consistent across cognitive stages (SCD+: 25/84 [30%] vs 5/78 [6%]; P < .001; MCI: 45/108 [42%] vs 9/102 [9%]; P < .001; dementia: 39/80 [49%] vs 16/80 [20%]; P < .001). Conclusion and Relevance: In this study, early amyloid PET allowed memory clinic patients to receive an etiological diagnosis with very high confidence after only 3 months compared with patients who had not undergone amyloid PET. These findings support the implementation of amyloid PET early in the diagnostic workup of memory clinic patients. Trial Registration: EudraCT Number: 2017-002527-21.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Masculino , Femenino , Anciano , Enfermedad de Alzheimer/psicología , Encéfalo/metabolismo , Estudios Prospectivos , Tomografía de Emisión de Positrones , Amiloide/metabolismo , Proteínas Amiloidogénicas , Péptidos beta-Amiloides/metabolismo
15.
JAMA Netw Open ; 6(1): e2250921, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36637820

RESUMEN

Importance: Individuals who are amyloid-positive with subjective cognitive decline and clinical features increasing the likelihood of preclinical Alzheimer disease (SCD+) are at higher risk of developing dementia. Some individuals with SCD+ undergo amyloid-positron emission tomography (PET) as part of research studies and frequently wish to know their amyloid status; however, the disclosure of a positive amyloid-PET result might have psychological risks. Objective: To assess the psychological outcomes of the amyloid-PET result disclosure in individuals with SCD+ and explore which variables are associated with a safer disclosure in individuals who are amyloid positive. Design, Setting, and Participants: This prospective, multicenter study was conducted as part of The Amyloid Imaging to Prevent Alzheimer Disease Diagnostic and Patient Management Study (AMYPAD-DPMS) (recruitment period: from April 2018 to October 2020). The setting was 5 European memory clinics, and participants included patients with SCD+ who underwent amyloid-PET. Statistical analysis was performed from July to October 2022. Exposures: Disclosure of amyloid-PET result. Main Outcomes and Measures: Psychological outcomes were defined as (1) disclosure related distress, assessed using the Impact of Event Scale-Revised (IES-R; scores of at least 33 indicate probable presence of posttraumatic stress disorder [PTSD]); and (2) anxiety and depression, assessed using the Hospital Anxiety and Depression scale (HADS; scores of at least 15 indicate probable presence of severe mood disorder symptoms). Results: After disclosure, 27 patients with amyloid-positive SCD+ (median [IQR] age, 70 [66-74] years; gender: 14 men [52%]; median [IQR] education: 15 [13 to 17] years, median [IQR] Mini-Mental State Examination [MMSE] score, 29 [28 to 30]) had higher median (IQR) IES-R total score (10 [2 to 14] vs 0 [0 to 2]; P < .001), IES-R avoidance (0.00 [0.00 to 0.69] vs 0.00 [0.00 to 0.00]; P < .001), IES-R intrusions (0.50 [0.13 to 0.75] vs 0.00 [0.00 to 0.25]; P < .001), and IES-R hyperarousal (0.33 [0.00 to 0.67] vs 0.00 [0.00 to 0.00]; P < .001) scores than the 78 patients who were amyloid-negative (median [IQR], age, 67 [64 to 74] years, 45 men [58%], median [IQR] education: 15 [12 to 17] years, median [IQR] MMSE score: 29 [28 to 30]). There were no observed differences between amyloid-positive and amyloid-negative patients in the median (IQR) HADS Anxiety (-1.0 [-3.0 to 1.8] vs -2.0 [-4.8 to 1.0]; P = .06) and Depression (-1.0 [-2.0 to 0.0] vs -1.0 [-3.0 to 0.0]; P = .46) deltas (score after disclosure - scores at baseline). In patients with amyloid-positive SCD+, despite the small sample size, higher education was associated with lower disclosure-related distress (ρ = -0.43; P = .02) whereas the presence of study partner was associated with higher disclosure-related distress (W = 7.5; P = .03). No participants with amyloid-positive SCD+ showed probable presence of PTSD or severe anxiety or depression symptoms at follow-up. Conclusions and Relevance: The disclosure of a positive amyloid-PET result to patients with SCD+ was associated with a bigger psychological change, yet such change did not reach the threshold for clinical concern.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Masculino , Humanos , Adulto , Anciano , Enfermedad de Alzheimer/diagnóstico , Encéfalo/metabolismo , Péptidos beta-Amiloides/metabolismo , Estudios Prospectivos , Revelación , Tomografía de Emisión de Positrones , Disfunción Cognitiva/diagnóstico por imagen
16.
Amyloid ; 30(2): 169-187, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36411500

RESUMEN

BACKGROUND: [18F]flutemetamol is a PET radioligand used to image brain amyloid, but its detection of myocardial amyloid is not well-characterized. This histological study characterized binding of fluorescently labeled flutemetamol (cyano-flutemetamol) to amyloid deposits in myocardium. METHODS: Myocardial tissue was obtained post-mortem from 29 subjects with cardiac amyloidosis including transthyretin wild-type (ATTRwt), hereditary/variant transthyretin (ATTRv) and immunoglobulin light-chain (AL) types, and from 10 cardiac amyloid-free controls. Most subjects had antemortem electrocardiography, echocardiography, SPECT and cardiac MRI. Cyano-flutemetamol labeling patterns and integrated density values were evaluated relative to fluorescent derivatives of Congo red (X-34) and Pittsburgh compound-B (cyano-PiB). RESULTS: Cyano-flutemetamol labeling was not detectable in control subjects. In subjects with cardiac amyloidosis, cyano-flutemetamol labeling matched X-34- and cyano-PiB-labeled, and transthyretin- or lambda light chain-immunoreactive, amyloid deposits and was prevented by formic acid pre-treatment of myocardial sections. Cyano-flutemetamol mean fluorescence intensity, when adjusted for X-34 signal, was higher in the ATTRwt than the AL group. Cyano-flutemetamol integrated density correlated strongly with echocardiography measures of ventricular septal thickness and posterior wall thickness, and with heart mass. CONCLUSION: The high selectivity of cyano-flutemetamol binding to myocardial amyloid supports the diagnostic utility of [18F]flutemetamol PET imaging in patients with ATTR and AL types of cardiac amyloidosis.


Asunto(s)
Amiloidosis , Placa Amiloide , Humanos , Placa Amiloide/patología , Prealbúmina/genética , Prealbúmina/metabolismo , Miocardio/patología , Benzotiazoles/metabolismo , Amiloidosis/metabolismo , Amiloide/metabolismo , Proteínas Amiloidogénicas/metabolismo
17.
Mol Imaging Biol ; 24(6): 862-873, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35794343

RESUMEN

PURPOSE: The BACE inhibitor verubecestat was previously found to reduce amyloid load as assessed by 18F-flutemetamol positron emission tomography (PET) composite cortical standard uptake value ratio (SUVr) in patients with mild-to-moderate Alzheimer's disease (AD) in a substudy of the EPOCH trial. Here, we report on additional analyses relevant to the EPOCH PET data, to help inform on the use of PET for assessing amlyloid load in AD clinical trials. PROCEDURES: The analyses addressed (1) identification of an optimal 18F-flutemetamol reference region, (2) determination of the threshold to characterize the magnitude of the longitudinal change, and (3) the impact of partial volume correction (PVC). Pons and subcortical white matter were evaluated as reference regions. The SUVr cutoffs and final reference region choice were determined using 162 18F-flutemetamol PET scans from the AIBL dataset. 18F-flutemetamol SUVrs were computed at baseline and at Week 78 in EPOCH participants who received verubecestat 12 mg (n = 14), 40 mg (n = 20), or placebo (n = 20). Drug effects on amyloid load were computed using either Meltzer (MZ), or symmetric geometric transfer matrix (SGTM) PVC and compared to uncorrected data. RESULTS: The optimal subcortical white matter and pons SUVr cutoffs were determined to be 0.69 and 0.62, respectively. The effect size to detect longitudinal change was higher for subcortical white matter (1.20) than pons (0.45). Hence, subcortical white matter was used as the reference region for the EPOCH PET substudy. In EPOCH, uncorrected baseline SUVr values correlated strongly with MZ PVC (r2 = 0.94) and SGTM PVC (r2 = 0.92) baseline SUVr values, and PVC did not provide improvement for evaluating treatment effects on amyloid load at Week 78. No change from baseline was observed in the placebo group at Week 78, whereas a 0.02 and a 0.04 decrease in SUVr were observed in the 12 mg and 40 mg arms, with the latter representing a 22% reduction in the amyloid load above the detection threshold. CONCLUSIONS: Treatment-related 18F-flutemetamol longitudinal changes in AD clinical trials can be quantified using a subcortical white matter reference region without PVC. CLINICAL TRIAL REGISTRATION: clinicaltrials.gov NCT01739348.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/tratamiento farmacológico , Amiloide/metabolismo , Compuestos de Anilina , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Tomografía de Emisión de Positrones/métodos
18.
Alzheimers Dement ; 2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35715930

RESUMEN

INTRODUCTION: AMYPAD Diagnostic and Patient Management Study (DPMS) aims to investigate the clinical utility and cost-effectiveness of amyloid-PET in Europe. Here we present participants' baseline features and discuss the representativeness of the cohort. METHODS: Participants with subjective cognitive decline plus (SCD+), mild cognitive impairment (MCI), or dementia were recruited in eight European memory clinics from April 16, 2018, to October 30, 2020, and randomized into three arms: ARM1, early amyloid-PET; ARM2, late amyloid-PET; and ARM3, free-choice. RESULTS: A total of 840 participants (244 SCD+, 341 MCI, and 255 dementia) were enrolled. Sociodemographic/clinical features did not differ significantly among recruiting memory clinics or with previously reported cohorts. The randomization assigned 35% of participants to ARM1, 32% to ARM2, and 33% to ARM3; cognitive stages were distributed equally across the arms. DISCUSSION: The features of AMYPAD-DPMS participants are as expected for a memory clinic population. This ensures the generalizability of future study results.

19.
Eur J Nucl Med Mol Imaging ; 49(10): 3508-3528, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35389071

RESUMEN

Amyloid-ß (Aß) pathology is one of the earliest detectable brain changes in Alzheimer's disease (AD) pathogenesis. The overall load and spatial distribution of brain Aß can be determined in vivo using positron emission tomography (PET), for which three fluorine-18 labelled radiotracers have been approved for clinical use. In clinical practice, trained readers will categorise scans as either Aß positive or negative, based on visual inspection. Diagnostic decisions are often based on these reads and patient selection for clinical trials is increasingly guided by amyloid status. However, tracer deposition in the grey matter as a function of amyloid load is an inherently continuous process, which is not sufficiently appreciated through binary cut-offs alone. State-of-the-art methods for amyloid PET quantification can generate tracer-independent measures of Aß burden. Recent research has shown the ability of these quantitative measures to highlight pathological changes at the earliest stages of the AD continuum and generate more sensitive thresholds, as well as improving diagnostic confidence around established binary cut-offs. With the recent FDA approval of aducanumab and more candidate drugs on the horizon, early identification of amyloid burden using quantitative measures is critical for enrolling appropriate subjects to help establish the optimal window for therapeutic intervention and secondary prevention. In addition, quantitative amyloid measurements are used for treatment response monitoring in clinical trials. In clinical settings, large multi-centre studies have shown that amyloid PET results change both diagnosis and patient management and that quantification can accurately predict rates of cognitive decline. Whether these changes in management reflect an improvement in clinical outcomes is yet to be determined and further validation work is required to establish the utility of quantification for supporting treatment endpoint decisions. In this state-of-the-art review, several tools and measures available for amyloid PET quantification are summarised and discussed. Use of these methods is growing both clinically and in the research domain. Concurrently, there is a duty of care to the wider dementia community to increase visibility and understanding of these methods.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Disfunción Cognitiva , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/diagnóstico por imagen , Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Disfunción Cognitiva/complicaciones , Humanos , Tomografía de Emisión de Positrones/métodos
20.
Alzheimers Res Ther ; 14(1): 46, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35351181

RESUMEN

BACKGROUND: Up to now, there are no clinically available minimally invasive biomarkers to accurately identify mild cognitive impairment (MCI) patients who are at greater risk to progress to Alzheimer's disease (AD) dementia. The recent advent of blood-based markers opens the door for more accessible biomarkers. We aimed to identify which combinations of AD related plasma biomarkers and other easily accessible assessments best predict progression to AD dementia in patients with mild cognitive impairment (MCI). METHODS: We included patients with amnestic MCI (n = 110) followed prospectively over 3 years to assess clinical status. Baseline plasma biomarkers (amyloid-ß 42/40, phosphorylated tau217 [p-tau217], neurofilament light and glial fibrillary acidic protein), hippocampal volume, APOE genotype, and cognitive tests were available. Logistic regressions with conversion to amyloid-positive AD dementia within 3 years as outcome was used to evaluate the performance of different biomarkers measured at baseline, used alone or in combination. The first analyses included only the plasma biomarkers to determine the ones most related to AD dementia conversion. Second, hippocampal volume, APOE genotype and a brief cognitive composite score (mPACC) were combined with the best plasma biomarker. RESULTS: Of all plasma biomarker combinations, p-tau217 alone had the best performance for discriminating progression to AD dementia vs all other combinations (AUC 0.84, 95% CI 0.75-0.93). Next, combining p-tau217 with hippocampal volume, cognition, and APOE genotype provided the best discrimination between MCI progressors vs. non-progressors (AUC 0.89, 0.82-0.95). Across the few best models combining different markers, p-tau217 and cognition were consistently the main contributors. The most parsimonious model including p-tau217 and cognition had a similar model fit, but a slightly lower AUC (0.87, 0.79-0.95, p = 0.07). CONCLUSION: We identified that combining plasma p-tau217 and a brief cognitive composite score was strongly related to greater risk of progression to AD dementia in MCI patients, suggesting that these measures could be key components of future prognostic algorithms for early AD. TRIAL REGISTRATION: NCT01028053 , registered December 9, 2009.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/psicología , Péptidos beta-Amiloides/metabolismo , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/psicología , Progresión de la Enfermedad , Humanos , Proteínas tau
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA