Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Methods Inf Med ; 46(5): 542-7, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17938776

RESUMEN

OBJECTIVE: Increasing use of retroviral vector-mediated gene transfer created intense interest to characterize vector integrations on the genomic level. Techniques to determine insertion sites, mainly based on time-consuming manual data processing, are commonly applied. Since a high variability in processing methods hampers further data comparison, there is an urgent need to systematically process the data arising from such analysis. METHODS: To allow large-scale and standardized comparison of insertion sites of viral vectors we developed two programs, IntegrationSeq and IntegrationMap. IntegrationSeq can trim sequences, and valid integration sequences get further processed with IntegrationMap for automatic genomic mapping. IntegrationMap retrieves detailed information about whether integrations are located in or close to genes, the name of the gene, the exact localization in the transcriptional units, and further parameters like the distance from the transcription start site to the integration. RESULTS: We validated the method using 259 files originating from integration site analysis (LM-PCR). Sequences processed by IntegrationSeq led to an increased yield of valid integration sequence detection, which were shown to be more sensitive than conventional analysis and 15 times faster, while the specificities are equal. Output files generated by IntegrationMap were found to be 99.8% identical with results retrieved by much slower conventional mapping with the ENSEMBL alignment tool. CONCLUSION: Using IntegrationSeq and IntegrationMap, a validated, fast and standardized high-throughput analysis of insertion sites can be achieved for the first time.


Asunto(s)
Biología Computacional , Técnicas de Transferencia de Gen , Terapia Genética , Vectores Genéticos , Retroviridae/genética , Linfocitos T , Humanos , Programas Informáticos
2.
Genome Biol ; 5(1): R3, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-14709175

RESUMEN

BACKGROUND: While the genome sequences for a variety of organisms are now available, the precise number of the genes encoded is still a matter of debate. For the human genome several stringent annotation approaches have resulted in the same number of potential genes, but a careful comparison revealed only limited overlap. This indicates that only the combination of different computational prediction methods and experimental evaluation of such in silico data will provide more complete genome annotations. In order to get a more complete gene content of the Drosophila melanogaster genome, we based our new D. melanogaster whole-transcriptome microarray, the Heidelberg FlyArray, on the combination of the Berkeley Drosophila Genome Project (BDGP) annotation and a novel ab initio gene prediction of lower stringency using the Fgenesh software. RESULTS: Here we provide evidence for the transcription of approximately 2,600 additional genes predicted by Fgenesh. Validation of the developmental profiling data by RT-PCR and in situ hybridization indicates a lower limit of 2,000 novel annotations, thus substantially raising the number of genes that make a fly. CONCLUSIONS: The successful design and application of this novel Drosophila microarray on the basis of our integrated in silico/wet biology approach confirms our expectation that in silico approaches alone will always tend to be incomplete. The identification of at least 2,000 novel genes highlights the importance of gathering experimental evidence to discover all genes within a genome. Moreover, as such an approach is independent of homology criteria, it will allow the discovery of novel genes unrelated to known protein families or those that have not been strictly conserved between species.


Asunto(s)
Drosophila melanogaster/genética , Perfilación de la Expresión Génica/métodos , Genes de Insecto/fisiología , Genoma , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Animales , Análisis por Conglomerados , Biología Computacional/métodos , Biología Computacional/estadística & datos numéricos , Perfilación de la Expresión Génica/estadística & datos numéricos , Hibridación in Situ/métodos , Modelos Genéticos , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos/estadística & datos numéricos , Valor Predictivo de las Pruebas , Seudogenes/genética , Interferencia de ARN/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos
3.
Proc Natl Acad Sci U S A ; 98(19): 10781-6, 2001 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-11535808

RESUMEN

Correspondence analysis is an explorative computational method for the study of associations between variables. Much like principal component analysis, it displays a low-dimensional projection of the data, e.g., into a plane. It does this, though, for two variables simultaneously, thus revealing associations between them. Here, we demonstrate the applicability of correspondence analysis to and high value for the analysis of microarray data, displaying associations between genes and experiments. To introduce the method, we show its application to the well-known Saccharomyces cerevisiae cell-cycle synchronization data by Spellman et al. [Spellman, P. T., Sherlock, G., Zhang, M. Q., Iyer, V. R., Anders, K., Eisen, M. B., Brown, P. O., Botstein, D. & Futcher, B. (1998) Mol. Biol. Cell 9, 3273-3297], allowing for comparison with their visualization of this data set. Furthermore, we apply correspondence analysis to a non-time-series data set of our own, thus supporting its general applicability to microarray data of different complexity, underlying structure, and experimental strategy (both two-channel fluorescence-tag and radioactive labeling).


Asunto(s)
Interpretación Estadística de Datos , Expresión Génica , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Proteínas Tirosina Fosfatasas , Proteínas de Saccharomyces cerevisiae , Transcripción Genética , Ciclo Celular , Proteínas de Ciclo Celular/genética , Saccharomyces cerevisiae/genética
4.
Comp Funct Genomics ; 2(2): 69-79, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-18628902

RESUMEN

Saccharomyces cerevisiae strains frequently exhibit rather specific phenotypic features needed for adaptation to a special environment. Wine yeast strains are able to ferment musts, for example, while other industrial or laboratory strains fail to do so. The genetic differences that characterize wine yeast strains are poorly understood, however. As a first search of genetic differences between wine and laboratory strains, we performed DNA-array analyses on the typical wine yeast strain T73 and the standard laboratory background in S288c. Our analysis shows that even under normal conditions, logarithmic growth in YPD medium, the two strains have expression patterns that differ significantly in more than 40 genes. Subsequent studies indicated that these differences correlate with small changes in promoter regions or variations in gene copy number. Blotting copy numbers vs. transcript levels produced patterns, which were specific for the individual strains and could be used for a characterization of unknown samples.

5.
Bioinformatics ; 16(11): 1014-22, 2000 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-11159313

RESUMEN

MOTIVATION: The technology of hybridization to DNA arrays is used to obtain the expression levels of many different genes simultaneously. It enables searching for genes that are expressed specifically under certain conditions. However, the technology produces large amounts of data demanding computational methods for their analysis. It is necessary to find ways to compare data from different experiments and to consider the quality and reproducibility of the data. RESULTS: Data analyzed in this paper have been generated by hybridization of radioactively labeled targets to DNA arrays spotted on nylon membranes. We introduce methods to compare the intensity values of several hybridization experiments. This is essential to find differentially expressed genes or to do pattern analysis. We also discuss possibilities for quality control of the acquired data. AVAILABILITY: http://www.dkfz.de/tbi CONTACT: M.Vingron@dkfz-heidelberg.de


Asunto(s)
Perfilación de la Expresión Génica/estadística & datos numéricos , Análisis de Secuencia por Matrices de Oligonucleótidos/estadística & datos numéricos , Animales , Biología Computacional , Interpretación Estadística de Datos , Bases de Datos Factuales , Etiquetas de Secuencia Expresada , Perfilación de la Expresión Génica/normas , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos/normas , Control de Calidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA