RESUMEN
Numerous nanoparticles have been utilized to deliver Fe2+ for tumor ferroptosis therapy, which can be readily converted to Fe3+via Fenton reactions to generate hydroxyl radical (â¢OH). However, the ferroptosis therapeutic efficacy of large tumors is limited due to the slow conversion of Fe3+ to Fe2+via Fenton reactions. Herein, a strategy of intratumor Fe3+/2+ cyclic catalysis is proposed for ferroptosis therapy of large tumors, which was realized based on our newly developed hollow mesoporous iron sesquioxide nanoparticle (HMISN). Cisplatin (CDDP) and Gd-poly(acrylic acid) macrochelates (GP) were loaded into the hollow core of HMISN, whose surface was modified by laccase (LAC). Fe3+, CDDP, GP, and LAC can be gradually released from CDDP@GP@HMISN@LAC in the acidic tumor microenvironment. The intratumor O2 can be catalyzed into superoxide anion (O2â¢-) by LAC, and the intratumor NADPH oxidases can be activated by CDDP to generate O2â¢-. The O2â¢- can react with Fe3+ to generate Fe2+, and raise H2O2 level via the superoxide dismutase. The generated Fe2+ and H2O2 can be fast converted into Fe3+ and â¢OH via Fenton reactions. The cyclic catalysis of intratumor Fe3+/2+ initiated by CDDP@GP@HMISN@LAC can be used for ferroptosis therapy of large tumors.
Asunto(s)
Ferroptosis , Hierro , Ferroptosis/efectos de los fármacos , Animales , Catálisis , Humanos , Hierro/química , Línea Celular Tumoral , Nanopartículas/química , Porosidad , Ratones , Cisplatino/química , Cisplatino/uso terapéutico , Neoplasias/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Antineoplásicos/química , Ratones Endogámicos BALB C , Peróxido de Hidrógeno/química , Microambiente Tumoral/efectos de los fármacos , Ratones Desnudos , FemeninoRESUMEN
Active and durable electrocatalysts are essential for commercializing direct methanol fuel cells. However, Pt-based catalysts, extensively utilized in the methanol oxidation reaction (MOR), are suffered from resource scarcity and CO poisoning, which degrade MOR activity severely. Herein, Pt1Rux bimetallic catalysts were synthesized by confining Pt1Rux alloys within the shells of mesoporous carbon hollow spheres (MCHS) via a vacuum-assisted impregnation method (Pt1Rux@MCHS). The confinement effect induced by mesoporous carbon hollow spheres resulted in a robust structure of Pt1Ru3@MCHS with an ultrafine dispersion of alloy nanoparticles. The experimental and theoretical results confirmed that the boosting electrocatalytic activity and stability of the MOR over Pt1Ru3@MCHS were contributed to the regulated electronic structure as well as the superior CO tolerance of atomic Pt site caused by the electronic interaction between single Pt atoms and Ru nanoparticles. This strategy is versatile for the rational design of Pt-based bimetallic catalysts and has a positive impact on MOR performance.
RESUMEN
The Ruddlesden-Popper (R-P) bilayer nickelate, La3Ni2O7, was recently found to show signatures of high-temperature superconductivity (HTSC) at pressures above 14 GPa (ref. 1). Subsequent investigations achieved zero resistance in single-crystalline and polycrystalline samples under hydrostatic pressure conditions2-4. Yet, obvious diamagnetic signals, the other hallmark of superconductors, are still lacking owing to the filamentary nature with low superconducting volume fraction2,4,5. The presence of a new 1313 polymorph and competing R-P phases obscured proper identification of the phase for HTSC6-9. Thus, achieving bulk HTSC and identifying the phase at play are the most prominent tasks. Here we address these issues in the praseodymium (Pr)-doped La2PrNi2O7 polycrystalline samples. We find that substitutions of Pr for La effectively inhibit the intergrowth of different R-P phases, resulting in a nearly pure bilayer structure. For La2PrNi2O7, pressure-induced orthorhombic to tetragonal structural transition takes place at Pc ≈ 11 GPa, above which HTSC emerges gradually on further compression. The superconducting transition temperatures at 18-20 GPa reach T c onset = 82.5 K and T c zero = 60 K , which are the highest values, to our knowledge, among known nickelate superconductors. Importantly, bulk HTSC was testified by detecting clear diamagnetic signals below about 75 K with appreciable superconducting shielding volume fractions at a pressure of above 15 GPa. Our results not only resolve the existing controversies but also provide directions for exploring bulk HTSC in the bilayer nickelates.
RESUMEN
Congenital heart disease (CHD) is the leading cause of birth defect-related mortality. CHD is a multifactorial, complex disease involving environmental factors playing important roles. To elucidate the cardiac cellular and molecular mechanisms of cardiac malformation, we administered pregnant mice with a single dose of all-trans retinoic acid (RA) at E8.5, as the CHD model. We performed single-cell RNA sequencing on cardiac cells from developing mouse hearts spanning from E8.5 to E17.5 after RA administration. A total of 69,447 cells were obtained from seven developmental stages ranging from E8.5 to E17.5. RA significantly impacted various CM subpopulations, particularly the outflow tract CMs at E9.0 by reduction of Tdgf1 expression. RA also influences the transition of endocardial-to-mesenchymal cells by decreasing the Stmn2 levels, which may contribute to abnormal valve development. In addition, RA altered the metabolic pattern of epicardial cells at E11.5 and promoted its differentiation potential. Taken together, these results are valuable for the development of preventive and therapeutic strategies for CHDs.
RESUMEN
Sleep disorders are becoming more and more common, leading to many health problems. However, most of current available medications to treat sleep disorders are addictive and even impair cognitive abilities. Therefore, it is important to find a natural and safe alternative to treat sleep disorders. In this study, twenty-four 8-week-old male ICR mice (25 ± 2 g) were equally divided into three groups: the control group (gavage of 0.9% saline), the eucalyptus essential oil (EEO) group (10 mg/kg B.W.), and the diazepam group (1 mg/kg B.W.). Firstly, open field test and sleep induction test were used to determine the sedative-hypnotic effect of EEO. Secondly, the effect of EEO on neurotransmitters in the mice brain was determined. Finally, based on the gut microbiota-brain axis (GMBA), the effect of EEO on the intestinal flora of mice was explored. It was found that EEO significantly reduce the activity and prolong the sleep duration of mice, exhibiting a good sedative-hypnotic effect. In the brain, EEO could increase the levels of sleep-promoting neurotransmitters, such as glutamine, Gamma-aminobutyric acid (GABA), glycine, tryptophan, N-acetylserotonin, and 5-hydroxyindoleacetic acid (5-HIAA). In the intestine, EEO was found to increase the diversity of gut microbes, the abundance of short chain fatty acid (SCFA) producing flora, and the abundance of functional flora synthesizing GABA and glycine neurotransmitters. These studies suggested that EEO exerted a sedative-hypnotic effect by acting on gut microbes and neurotransmitters in the brain. EEO has the potential to become a natural and safe alternative to traditional hypnotic sedative drugs.
RESUMEN
Background: Non-small cell lung cancer (NSCLC) ranks among the most prevalent and lethal malignancies globally. Fatty acids (FAs) play a significant role in diverse physiological and pathological mechanisms, yet their precise involvement in NSCLC remains poorly understood. Methods: This study utilized a large-scale prospective cohort of 249,132 participants, observed over an average of 12 years, to investigate the relationship between different FAs and NSCLC risk. Analytical approaches included Cox proportional hazards regression, Kaplan-Meier survival analysis, accelerated failure time (AFT) modeling, and restricted cubic spline (RCS) analysis. Results: During the follow-up period, 1,460 participants were diagnosed with NSCLC. Cox regression analysis demonstrated that elevated levels of docosahexaenoic acid (DHA), linoleic acid (LA), and omega-3 were inversely associated with NSCLC risk. Kaplan-Meier curves, along with AFT models, corroborated that elevated concentrations of DHA and LA significantly delayed NSCLC onset. Additionally, RCS analysis uncovered nuanced dose-response relationships between these FAs and NSCLC. Stratified analyses highlighted variability based on smoking status, gender, and body mass index subgroups. Conclusion: The concentration of specific FAs exhibits a significant association with NSCLC risk. These results offer a foundation for devising dietary FA composition adjustments aimed at reducing NSCLC risk.
RESUMEN
Radiation-induced intestinal injury (RIII) constitutes a challenge in radiotherapy. Ionizing radiation (IR) induces DNA and mitochondrial damage by increasing reactive oxygen species (ROS). Sodium-glucose cotransporter 1 (SGLT1) is abundant in the gastrointestinal tract and the protective effects of inhibited SGLT1 in kidney and cardiovascular disease have been widely reported. However, the function of SGLT1 in RIII remains unclear. Herein, we reported that IR induced intestinal epithelial cell damage along with upregulation of SGLT1 in vivo and in vitro, which was alleviated by inhibition of SGLT1. Specifically, maintaining intestinal cell homeostasis was detected through cellular proliferation, apoptosis, and DNA damage assays, promoting epithelial regeneration and lifespan extension. Considering the importance of mitochondrial function in cell fate, we next confirmed that SGLT inhibition maintains mitochondrial homeostasis through enhanced mitophagy in intestinal epithelial cells. Finally, based on the bioinformatics analysis and cell validation, we demonstrated that inhibition of SGLT1 suppresses the PI3K/AKT/mTOR pathway to enhance mitophagy activation post-irradiation. In addition, we preliminarily demonstrate that SGLT inhibitors do not affect the radiosensitivity of tumors. Hence, our findings suggest that inhibition of SGLT is a promising therapeutic strategy to protect against RIII. To the best of our knowledge, this is the first report on the potential effect of SGLT1 inhibition in RIII.
RESUMEN
Current studies have demonstrated that microbe-host interactions (MHIs) play important roles in human public health. Therefore, identifying the interactions between microbes and hosts is beneficial to understanding the role of the microbiome and their underlying mechanisms. However, traditional wet-lab experimental approaches are insufficient for large-scale exploration of candidate microbes, as they are costly, laborious, and time-consuming. Thus, it is critical to prioritize microbe-interacting hosts by computational approaches for further biological experimental validation. In this work, we proposed a novel deep learning-based method called MHIPM, to predict MHIs by utilizing multisource biological information. Specifically, we first constructed a heterogeneous microbial network that consisted of human proteins, viruses, bacteriophages (phages), and pathogenic bacteria. Next, we used one of the largest protein language models, ESM-2, and a document embedding model, doc2vec, combined with a self-attention mechanism to extract the interview features from protein sequences. Then, an inductive learning-based model, GraphSAGE, was used to capture the intraview features from the heterogeneous network. Experimental results on three prediction tasks indicated that the MHIPM model consistently achieved better performance than seven baseline algorithms and its four variants. In addition, case studies and molecular docking experiments for two human proteins further confirmed the effectiveness of our model. In conclusion, MHIPM is an efficient and robust method in predicting MHIs and provides plausible candidate microbes for biological experiments. MHIPM is available at https://github.com/JIENWU/MHIPM.
Asunto(s)
Aprendizaje Profundo , Humanos , Interacciones Microbiota-Huesped , Bacterias/metabolismo , Biología Computacional/métodos , Interacciones Huésped-PatógenoRESUMEN
In recent years, there has been ongoing debate about the dietary choices for pet cats, particularly regarding three options: extruded dry food, cooked meat, and raw meat. Determining which diet is most suitable for a cat's healthy growth still requires substantial empirical support. Our study aimed to evaluate the effects of feeding Ragdoll cats (n = 5/group) extruded dry food (ED), cooked meat (CM), and raw meat (RM) on their growth performance, apparent digestibility, fur condition, blood parameters, fecal scores, and gut microbiota composition. However, our results indicate that different types of diets did not significantly affect the daily weight gain of Ragdoll cats. The CM group showed a significant improvement in the digestibility of dry matter, fat and protein compared to the ED group (p < 0.05) but no improvement in that of fat compared to the RM group. Compared to the ED group, both the CM and RM groups showed significant improvements in fur condition while exhibiting a significant decrease in fecal scores (p < 0.05). The CM and RM groups exhibited enhanced serum antioxidant capacity (p < 0.05) and increased immunity in the cats (p < 0.05). Immunity enhancement in the CM group was significantly higher than that in the RM group(p < 0.05). The ED group showed an increase in the abundance of beneficial bacteria in Ragdoll cat intestines, while the CM and RM groups showed enhancements in the innate microbiota of feline animals. These data, to some extent, suggest that CM is the most suitable diet for Ragdoll cats, but further research on intestine microbiota is still needed. These study findings provide a reference for purebred pet breeding purposes.
RESUMEN
Plants are subjected to various biotic and abiotic stresses that significantly impact their growth and productivity. To achieve balanced crop growth and yield, including for leafy vegetables, the continuous application of micronutrient is crucial. This study investigates the effects of different concentrations of copper sulphate (0, 75, 125, and 175 ppm) on the morphological and biochemical features of Spinacia oleracea and Avena sativa. Morphological parameters such as plant height, leaf area, root length, and fresh and dry weights were optimized at a concentration of 75 ppm copper sulfate. At this concentration, chlorophyll a & b levels increased significantly in Spinacia oleracea (462.9 and 249.8 ðð/ð), and Avena sativa (404.7 and 437.63ðð/ð). However, carotenoid content and sugar levels in Spinacia oleracea were negatively affected, while sugar content in Avena sativa increased at 125 ppm (941.6 µg/ml). Protein content increased in Spinacia oleracea (75 ppm, 180.3 µg/ml) but decreased in Avena sativa. Phenol content peaked in both plants at 75 ppm (362.2 and 244.5 µg/ml). Higher concentrations (175 ppm) of copper sulfate reduced plant productivity and health. Plants exposed to control and optimal concentrations (75 and 125 ppm) of copper sulpate exhibited the best health and growth compared to those subjected to higher concentrations. Maximum plant height, leaf area, root length, fresh and dry weights were observed at lower concentrations (75 and 125 ppm) of copper sulfate, while higher concentrations caused toxicity. Optimal copper sulfate levels enhanced chlorophyll a, chlorophyll b, total chlorophyll, protein, and phenol contents but inhibited sugar and carotenoid contents in both Spinacia oleracea and Avena sativa. Overall, increased copper sulfate treatment adversely affected the growth parameters and biochemical profiles of these plants.
Asunto(s)
Avena , Clorofila , Sulfato de Cobre , Spinacia oleracea , Spinacia oleracea/efectos de los fármacos , Spinacia oleracea/crecimiento & desarrollo , Spinacia oleracea/metabolismo , Clorofila/metabolismo , Avena/efectos de los fármacos , Avena/crecimiento & desarrollo , Avena/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Carotenoides/metabolismo , Estrés Fisiológico/efectos de los fármacos , Clorofila A/metabolismo , Proteínas de Plantas/metabolismoRESUMEN
BACKGROUND: Interventions focusing on individual behaviours (physical activity, sedentary behaviour, sleep) of preschool-aged children have been widely studied. However, there is a lack of understanding about integrated interventions that target all three 24-hour movement behaviours. This is the first study to assess the effectiveness of an intervention aimed at improving all three 24-hour movement behaviours among preschoolers in Hong Kong. METHODS: A 12-week randomised controlled trial with a 12-week follow-up was conducted. Parent-child pairs were randomised to integrated approach (targeting all three behaviours), dyadic approach (targeting physical activity and sedentary behaviour including screen time), or wait-list control group. Utilising the Internet-based delivery, this intervention consisted of education materials, workshops, and interactive questionnaires and reminders. Two intervention groups employed the same strategies, with the only difference being that the integrated approach targeted sleep in addition to physical activity and sedentary behaviour. The outcomes were preschoolers' overall 24-hour movement behaviours which were assessed by the Activity Sleep Index (ASI), movement behaviour composition, and absolute duration of movement behaviours. Generalised estimating equations were conducted to evaluate the intervention. RESULTS: A total of 147 preschoolers (4.8 ± 0.9 years old, 56.5% boys) and their parents were included. Preschoolers in all groups had a lower ASI at follow-up compared with baseline. Preschoolers in the integrated approach had a smaller decline in ASI at follow-up, compared to that in the control group (3.41; 95% confidence interval [CI] = 0.07, 6.76). Preschoolers in both intervention groups had a smaller reduction of the composition of time spent in physical activity at follow-up, and a decreased screen time at postintervention and follow-up. No significant differences were found for the sleep subcomponent. Furthermore, preschoolers in the dyadic approach had a smaller increase in the sedentary behaviour subcomponent (vs. CONTROL: - 0.21; 95% CI = - 0.37, - 0.05) at follow-up. CONCLUSIONS: Both intervention groups showed a decrease in screen time at postintervention, but there were no significant changes in other behaviours. The favourable changes observed at follow-up demonstrated the effectiveness of both intervention approaches on alleviating the decline in the composition of time spent in physical activity and reducing screen time and revealed the possible effectiveness of the integrated approach in promoting overall movement behaviours among preschoolers. TRIAL REGISTRATION: The study is prospectively registered at the Chinese Clinical Trial Registry (ChiCTR2200055958).
Asunto(s)
Padres , Conducta Sedentaria , Sueño , Humanos , Femenino , Masculino , Preescolar , Sueño/fisiología , Hong Kong , Encuestas y Cuestionarios , Conductas Relacionadas con la Salud , Ejercicio Físico , Tiempo de Pantalla , Conducta Infantil , Promoción de la Salud/métodos , Estudios de Seguimiento , Relaciones Padres-HijoRESUMEN
BACKGROUND: Considering the finite time within a 24-h day, the distribution of time spent on movement behaviours has been found to be associated with health outcomes. OBJECTIVES: This systematic review and meta-analysis aimed to summarise and evaluate the overflow effects of interventions targeting a single behaviour (physical activity, sedentary behaviour/screen time, or sleep) on other non-targeted behaviours among children and adolescents. METHODS: Six databases (MEDLINE [Ovid], PsycINFO [ProQuest], EMBASE [Ovid], PubMed, Web of Science and SPORTDiscus [EBSCO]) were searched for relevant studies published before 13 May, 2024. Randomised controlled trials and clustered randomised controlled trials that targeted a single behaviour and also assessed the effects on non-targeted behaviours, comprised of healthy children under the age of 18 years, were included. Movement behaviours can be measured either objectively or subjectively. The revised Cochrane risk-of-bias tool for randomised trials was adopted to evaluate the risk of bias. RESULTS: A total of 102 studies with 45,998 participants from 21 countries were identified, and 60 of them with 26,183 participants were incorporated into the meta-analysis. The meta-analysis demonstrated that physical activity interventions led to a reduction in the proportion of each day spent in sedentary behaviour (mean difference = - 0.95% of wear time, 95% confidence interval - 1.44, - 0.45, I2 = 39%). Sedentary behaviour interventions resulted in increased standing time (mean difference = 3.87%, 95% confidence interval 1.99, 5.75, I2 = 0%). Interventions targeting screen time did not yield changes in physical activity or sleep. The findings on the effectiveness of sleep interventions on non-targeted behaviours and of physical activity interventions on sleep were inconclusive. CONCLUSIONS: Overall, the findings suggested that interventions aimed at increasing physical activity or reducing sedentary behaviour had overflow effects on non-targeted behaviours, but the effect sizes were small. Additional evidence is needed to reach definitive conclusions regarding the impact of behaviour change interventions on sleep and of the overflow effects of sleep interventions.
RESUMEN
With the development of industry and modern manufacturing, nondegradable low-density polyethylene (LDPE) has been widely used, posing a rising environmental hazard to natural ecosystems and public health. In this study, we isolated a series of LDPE-degrading fungi from landfill sites and carried out LDPE degradation experiments by combining highly efficient degrading fungi in pairs. The results showed that the mixed microorganisms composed of Alternaria sp. CPEF-1 and Trametes sp. PE2F-4 (H-3 group) had a greater degradation effect on heat-treated LDPE (T-LDPE). After 30 days of inoculation with combination strain H-3, the weight loss rate of the T-LDPE film was approximately 154% higher than that of the untreated LDPE (U-LDPE) film, and the weight loss rate reached 0.66 ± 0.06%. Environmental scanning electron microscopy (ESEM) and Fourier transform infrared spectroscopy (FTIR) were used to further investigate the biodegradation impacts of T-LDPE, including the changes on the surface and depolymerization of the LDPE films during the fungal degradation process. Our findings revealed that the combined fungal treatment is more effective at degrading T-LDPE than the single strain treatment, and it is expected that properly altering the composition of the microbial community can help lessen the detrimental impact of plastics on the environment.
Asunto(s)
Alternaria , Biodegradación Ambiental , Polietileno , Trametes , Alternaria/metabolismo , Polietileno/metabolismo , Trametes/metabolismo , Instalaciones de Eliminación de Residuos , Microscopía Electrónica de Rastreo , Espectroscopía Infrarroja por Transformada de Fourier , Filogenia , Microbiología del SueloRESUMEN
Superselective adrenal artery embolization (SAAE) offers a novel approach for treating primary aldosteronism (PA). In this study, we aimed to assess the efficacy and safety of SAAE for the treatment of PA based on the lateralization results obtained from adrenal vein sampling (AVS).In this prospective study, we enrolled 40 patients with PA who underwent SAAE. The patients were categorized into two groups, unilateral PA and bilateral PA, based on AVS results. Clinical parameters and biochemical markers were assessed at 3 and 12 months postoperatively. The primary outcomes were changes in blood pressure and defined daily dose (DDD) of antihypertensive medications compared to baseline. Thirty-eight patients achieved technical success, with favorable clinical and biochemical efficacy rates. At three months postoperatively, the clinical efficacy rates were 79.2% and 78.6% for the UPA and BPA groups, respectively. At 12 months, the rates were 83.3% and 71.4%, respectively. Both groups exhibited a significant decrease in average blood pressure at 3 and 12 months compared with baseline (P < 0.001), and there was also a notable reduction in DDD (P < 0.05). At three months, the biochemical efficacy rates were 61.9% and 58.3% in the UPA and BPA groups, respectively. Due to loss to follow-up, biochemical indicators were not assessed at 12 months postoperatively. No severe adverse reactions occurred during or after SAAE. Patients with both UPA and BPA can benefit from SAAE. The superiority of bilateral adrenal artery embolization in the treatment of BPA over unilateral adrenal artery embolization requires further investigation.
RESUMEN
BACKGROUND: Evaluating the psychological resilience of lung cancer (LC) patients helps understand their mental state and guides future treatment. However, there is limited research on the psychological resilience of LC patients with bone metastases. AIM: To explore the psychological resilience of LC patients with bone metastases and identify factors that may influence psychological resilience. METHODS: LC patients with bone metastases who met the inclusion criteria were screened from those admitted to the Third Affiliated Hospital of Wenzhou Medical University. The psychological scores of the enrolled patients were collected. They were then grouped based on the mean psychological score: Those with scores lower than the mean value were placed in the low-score group and those with scores equal to or greater than the mean value was placed in the high-score group. The baseline data (age, gender, education level, marital status, residence, monthly income, and religious beliefs), along with self-efficacy and medical coping mode scores, were compared. RESULTS: This study included 142 LC patients with bone metastases admitted to our hospital from June 2022 to December 2023, with an average psychological resilience score of 63.24 ± 9.96 points. After grouping, the low-score group consisted of 69 patients, including 42 males and 27 females, with an average age of 67.38 ± 9.55 years. The high-score group consisted of 73 patients, including 49 males and 24 females, with a mean age of 61.97 ± 5.00 years. χ 2 analysis revealed significant differences between the two groups in education level (χ 2 = 6.604, P = 0.037), residence (χ 2 = 12.950, P = 0.002), monthly income (χ 2 = 9.375, P = 0.009), and medical coping modes (χ 2 = 19.150, P = 0.000). Independent sample t-test showed that the high-score group had significantly higher self-efficacy scores (t = 3.383, P = 0.001) and lower age than the low-score group (t = 4.256, P < 0.001). Furthermore, multivariate logistic regression hazard analysis confirmed that self-efficacy is an independent protective factor for psychological resilience [odds ratio (OR) = 0.926, P = 0.035, 95% confidence interval (CI): 0.862-0.995], while age (OR = 1.099, P = 0.003, 95%CI: 1.034-1.169) and medical coping modes (avoidance vs confrontation: OR = 3.767, P = 0.012, 95%CI: 1.342-10.570; resignation vs confrontation: OR = 5.687, P = 0.001, 95%CI: 1.974-16.385) were identified as independent risk factors. A predictive model based on self-efficacy, age, and medical coping modes was developed. The receiver operating characteristic analysis showed an area under the curve value of 0.778 (95%CI: 0.701-0.856, P < 0.001), indicating that the model has good predictive performance. CONCLUSION: LC patients with bone metastases are less psychologically resilient than the general population. Factors such as self-efficacy, age, and medical coping modes influence their psychological resilience. Patients with low self-efficacy, old age, and avoidance/resignation coping modes should be closely observed.
RESUMEN
Plant diseases impact the production of all kinds of crops, resulting in significant economic losses worldwide. Timely and accurate detection of plant pathogens is crucial for surveillance and management of plant diseases. In recent years, loop-mediated isothermal amplification (LAMP) has become a popular method for pathogen detection and disease diagnosis due to the advantages of its simple instrument requirement and constant reaction temperature. In this review, we provide an overview of current research on LAMP, including the reaction system, design of primers, selection of target regions, visualization of amplicons, and application of LAMP on the detection of all major groups of plant pathogens. We also discuss plant pathogens for which LAMP is yet to be developed, potential improvements of plant disease diagnosis, and disadvantages that need to be considered.
RESUMEN
Twenty-four-hour pH-impedance monitoring is an important diagnostic approach for gastroesophageal reflux disease (GERD). Reflux monitoring results cannot be synchronized with ambulatory motility imaging of the esophageal sphincter. We have designed a novel wired transmission pH-combined photographic catheter (WT-CPC) for the synchronous acquisition of reflux image and pH. Different patterns of reflux events were simulated to perform in a porcine gastroesophageal reflux model in vitro. The live porcine model of gastroesophageal reflux was established in three Bama pigs. Monitoring was conducted with the WT-CPC and pH-impedance catheter simultaneously. Measurements included the number and proportion of reflux events, as well as acid exposure time (AET). The detection rates of WT-CPC for distal and horizontal acid reflux events were significantly higher compared to those of pH-impedance catheters (100% vs. 14.29%, 100% vs. 57.14%, P < 0.05). There was no significant difference between the two methods in proximal acid reflux events (P = 0.217). Regarding mixed reflux events, WT-CPC exhibited higher detection rates for distal events than pH-impedance catheter (100% vs. 42.86%, P < 0.05). However, there was no significant difference between the two methods for proximal reflux events (P > 0.05). Both methods showed similar results for horizontal reflux events. A porcine gastroesophageal reflux model was successfully established and utilized for reflux monitoring. A total of 28 episodes of reflux were detected within 6.5 min. The detection rate achieved by WT-CPC for reflux events was significantly higher than that obtained by pH-impedance (100% vs. 78.57%, P = 0.023). The WT-CPC has demonstrated reflux monitoring capabilities in an isolated reflux organ model. It also showed good operability and performance in the porcine model. The WT-CPC holds promising potential to provide valuable diagnostic evidence for GERD.
RESUMEN
Background: Moyamoya disease (MMD) signifies a cerebrovascular disorder with obscure origin and a more rapid and severe progression in children than adults. This investigation aims to uncover age-associated distinctions through proteomic and metabolomic profiling to gain insights into the underlying mechanisms of MMD. Methods: Twelve MMD patients-six children and six adults-along with six healthy controls (HC), participated, each providing a 10 mL blood sample. Serum proteomic and metabolomic analyses were conducted using ultra-performance liquid chromatography and high-resolution mass spectrometry, complemented by bioinformatics to identify differential biomolecules and their interactions. Pathway implications were ascertained using GO and KEGG enrichment analysis. Results: Notable proteomic and metabolomic discrepancies were observed between pediatric and adult MMD subjects. A total of 235 and 216 proteins varied in adult and pediatric cases compared to HCs, with 73 proteins shared. In addition, 129 and 74 anionic, plus 96 and 104 cationic metabolites, were differentially expressed in the pediatric and adult groups, respectively, with 34 anionic and 28 cationic metabolites in common. Age-specific biomolecules further characterized these distinctions. Enrichment analysis pinpointed immunity and inflammation pathways, with vitamin digestion and absorption highlighted as pivotal in pediatric MMD. Conclusion: This study unveils distinct metabolic and proteomic patterns within pediatric and adult MMD patients. The critical role of the vitamin digestion and absorption pathway in the pathogenesis of pediatric MMD offers novel insight into disease mechanisms.
RESUMEN
This study explores the effects and mechanisms of Modified Xiaoyao Powder on the intestinal barrier and intestinal flora in mice with metabolic associated fatty liver disease(MAFLD) based on the " gut-liver axis". Sixty male C57BL/6 mice were randomly divided into the normal group, model group, bifidobacterium tetrad tablet group(SQ), and Modified Xiaoyao Powder groups with low,medium and high doses(XL, XM, XH), with 10 mice in each group. All the mice were administrated with a high-fat diet to build the MAFLD model except the normal group and then treated with related drugs for 12 weeks. Body mass, liver wet weight, and liver index were detected. Serum aspartate aminotransferase(AST), alanine aminotransferase(ALT), total cholesterol(TC), triacylglycerol(TG), low density lipoprotein cholesterol(LDL-C), high density lipoprotein cholesterol(HDL-C), and lipopolysaccharide(LPS)levels were detected using the biochemical kits. The contents of tumor necrosis factor-α(TNF-α) and interleukin(IL-6) in the liver were tested simultaneously. The morphological changes of the liver and intestine were observed using hematoxylin-eosin(HE) staining and oil red O staining. The goblet cells in the ileum were detected by periodic acid Schiff and alcian blue stain(AB-PAS) staining.The expression of zonula occludens-1(ZO-1), recombinant occludin(occludin), and recombinant claudin 1(claudin-1) in ileum and colon were detected by immunohistochemistry and Western blot. The changes of intestinal flora in mice were analyzed by 16S rRNA gene sequencing. The results showed that compared with the normal group, body weight, liver wet weight and liver index in the model group increased. The contents of TC, TG, ALT, AST, LDL-C, and LPS in the serum of the model group increased, while HDL-C decreased. Meanwhile, the contents of TNF-α and IL-6 in liver tissue increased and liver lipid accumulation increased, indicating successful model induction. Compared with the model group, body weight, liver wet weight, and liver index were decreased in XM,XH groups and SQ group. Serum levels of TC, TG, LDL-C, ALT and AST in XM group and SQ group were significantly decreased,and HDL-C levels were increased. The levels of IL-6, TNF-α in liver tissue and serum LPS in the XL, XM groups and SQ group were significantly decreased. The protein expression of claudin-1, occludin and ZO-1 in XL, XM groups and SQ group were increased. The analysis of intestinal flora showed that compared with the model group, Modified Xiaoyao Powder with a medium dose could significantly improve the richness and diversity of intestinal flora in mice. At the phylum level, the Firmicutes/Bacteroidetes(F/B) ratio decreased; at the genus level, Lactobacillus, Brautella, Bacteroides, and Ackermannia increased, while Prevotella, Desulfovibrio and Turicibacter decreased. The main differential species were Odorbacteraceaeae and Peptostreptococcaceae. In conclusion, Modified Xiaoyao Powder could inhibit inflammation, regulate intestinal flora homeostasis, and promote the repair of the intestinal mucosal barrier in mice with MAFLD.
Asunto(s)
Medicamentos Herbarios Chinos , Microbioma Gastrointestinal , Hígado , Ratones Endogámicos C57BL , Animales , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/administración & dosificación , Masculino , Ratones , Microbioma Gastrointestinal/efectos de los fármacos , Hígado/metabolismo , Hígado/efectos de los fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Polvos , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/genética , Humanos , Alanina Transaminasa/metabolismo , Aspartato Aminotransferasas/metabolismo , Ocludina/metabolismo , Ocludina/genética , Hígado Graso/tratamiento farmacológico , Hígado Graso/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Proteína de la Zonula Occludens-1/metabolismo , Proteína de la Zonula Occludens-1/genética , Triglicéridos/metabolismoRESUMEN
Fire smoke, consisting of solid particles and liquid droplets, poses risks of asphyxiation, poisoning, making it a significant contributor to fire-related fatalities and environmental pollution. The exploration of effective smoke control methods represents a vital approach to reducing the threat of fire smoke to public health and safety. This study aims to determine the characteristics of elimination for the fire smoke generated from burning four typical materials, thereby validating the universality of electric agglomeration smoke elimination technology. The results indicate that the elimination efficiency of electric agglomeration varies with the material type of the smoke. The rate of change in smoke transmittance from fast to slow is: polyvinyl chloride (PVC), polystyrene (PS), wood, and styrene butadiene rubber (SBR), respectively. With an external potential of 4 kV, PVC smoke reaches the safe threshold after 12.1 s, while SBR smoke achieves it in just 4.9 s. Analysis of the microscopic morphology of agglomerates with scanning electron microscopy (SEM) reveals that particle size distribution is an important factor affecting electric agglomeration elimination. This is because larger initial particles carry a greater charge, enabling the formation of larger agglomerates for more efficient removal. This study provides theoretical guidance for the practical application of electric agglomeration in eliminating smoke particles.