Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 660
Filtrar
Más filtros

Intervalo de año de publicación
1.
Talanta ; 281: 126876, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39277940

RESUMEN

Due to the increasing crop losses caused by common and newly emerging phytopathogens, there is a pressing need for the development of rapid and reliable methods for phytopathogen detection and analysis. Leveraging advancements in biochemical engineering technologies and nanomaterial sciences, researchers have put considerable efforts on utilizing biofunctionalized magnetic micro- and nanoparticles (MPs) to develop rapid and reliable systems for phytopathogen detection. MPs facilitate the rapid, high-throughput analysis and in-field applications, while the biomacromolecules, which play key roles in the biorecognitions, interactions and signal amplification, determine the specificity, sensitivity, reliability, and portability of pathogen detection systems. The integration of MPs and biomacromolecules provides dimensionality- and composition-dependent properties, representing a novel approach to develop phytopathogen detection systems. In this review, we summarize and discuss the general properties, synthesis and characterization of MPs, and focus on biomacromolecule-functionalized MPs as well as their representative applications for phytopathogen detection and analysis reported over the past decade. Extensively studied bioreceptors, such as antibodies, phages and phage proteins, nucleic acids, and glycans that are involved in the recognitions and interactions, are covered and discussed. Additionally, the integration of MPs-based detection system with portable microfluidic devices to facilitate their in-field applications is also discussed. Overall, this review focuses on biomacromolecule-functionalized MPs and their applications for phytopathogen detection, aiming to highlight their potential in developing advanced biosensing systems for effective plant protection.


Asunto(s)
Técnicas Biosensibles , Técnicas Biosensibles/métodos , Nanopartículas de Magnetita/química , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/virología , Plantas/microbiología , Plantas/química
2.
Alzheimers Res Ther ; 16(1): 218, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39390616

RESUMEN

BACKGROUND: SHR-1707 is a novel humanized anti-Aß IgG1 monoclonal antibody that binds to Aß fibrils and monomers to block the formation of Aß plaques or to promote the microglial phagocytosis of Aß. Preclinical studies showed that SHR-1707 reduced brain Aß deposition in 5xFAD transgenic mice. Herein, we conducted two phase 1 studies to evaluate the safety, tolerability, pharmacokinetics (PK) and pharmacodynamics (PD) of a single intravenous dose of SHR-1707 in healthy adult subjects. METHODS: Two randomized, double-blind, single-ascending-dose, phase 1 studies were conducted in China (Study CHN) and Australia (Study AUS). Study CHN consisted of 2 parts. In Part 1, eligible healthy young adults (18-45 years) were sequentially randomized 8:2 to receive SHR-1707 (five cohorts: 2, 6, 20, 40, and 60 mg/kg) or placebo in each cohort; in Part 2, elderly subjects (55-80 years) were randomized 8:4 to receive SHR-1707 (20 mg/kg) or placebo. A similar design was used in Study AUS, but with only healthy young adults enrolled across three dosing cohorts (2, 20, and 60 mg/kg). RESULTS: Sixty-two (part 1/2, n = 50/12; age range, 18-42/55-63 years) and 30 subjects (age range, 18-42 years) received SHR-1707 or placebo in Study CHN and Study AUS, respectively. In Study CHN, all treatment-related adverse events (TRAEs) were mild, with the most common being transient laboratory abnormalities. In Study AUS, TRAEs were mostly mild (1 moderate event each with SHR-1707/placebo); the most common TRAEs with SHR-1707 were dysgeusia and fatigue (8.3% each). In both studies, the exposure of SHR-1707 increased in a slightly greater than dose-proportional manner over the dose range of 2-60 mg/kg in young adults; there was a dose-dependent increase in plasma Aß42 concentration following SHR-1707 administration compared with the placebo group. The safety and PK and PD profiles of SHR-1707 in the elderly subjects were consistent with the younger counterpart at the same dose level. No ethnic difference in safety, PK and PD of SHR-1707 was observed. CONCLUSIONS: A single intravenous dose of SHR-1707 at 2-60 mg/kg was safe and well tolerated in healthy young adult and elderly subjects. The PK and PD profiles are supportive for further clinical development. TRIAL REGISTRATION: NCT04973189 (retrospectively registered on Jul.21, 2021) and NCT04745104 (registered on Feb.6, 2021) on clinicaltrials.gov.


Asunto(s)
Relación Dosis-Respuesta a Droga , Humanos , Método Doble Ciego , Masculino , Adulto , Persona de Mediana Edad , Femenino , Anciano , Adulto Joven , Adolescente , Anciano de 80 o más Años , Anticuerpos Monoclonales Humanizados/farmacocinética , Anticuerpos Monoclonales Humanizados/administración & dosificación , Anticuerpos Monoclonales Humanizados/farmacología , Voluntarios Sanos , Péptidos beta-Amiloides , Administración Intravenosa
3.
Clinicoecon Outcomes Res ; 16: 647-656, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39257454

RESUMEN

Purpose: To investigate the effect of StrataGraft (bioengineered allogeneic cellularized construct [BACC]) treatment on inpatient length of stay (LOS) as an indicator of hospital resource utilization. Patients and Methods: Data from the single-arm StrataCAT trial for adult patients with deep partial-thickness (DPT) burns who received BACC were compared with data from a matched external control arm comprising patients who received autografting for burn treatment from the National Burn Repository (NBR) during the same time period as StrataCAT. A matching, quasi-experimental approach was used to investigate the cause-and-effect relationship between BACC treatment and LOS (days). Matching factors included sex, age, ethnicity, race, burn causes, %TBSA burned (third-degree), %TBSA burned (second- and third-degrees), inhalation injury, diabetes mellitus, and hypertension. Balance was assessed between the cohorts for each confounder by standardized mean differences (SMD). Outcome was reported as average treatment effect on the treated. Results: The BACC and NBR Autograft cohorts included 47 and 2641 patients, respectively. Following matching, the Autograft cohort had 137 patients and was weighted to 47 patients. Patients in the BACC and final (matched) Autograft cohorts were similar in all demographic and clinical covariate categories after matching (ie, the absolute SMD were < 0.1). Treatment with BACC reduced the inpatient LOS by an average of 4.84 days (P = 0.0127) relative to the comparable (matched) Autograft cohort. An ad hoc analysis revealed that mean [SD] LOS for BACC and the weighted Autograft cohorts were 17.68 [12.75] and 22.51 [19.75] days, respectively, and were 1.39 [0.94] and 1.88 [1.31] days per %TBSA burned, respectively. Conclusion: The significantly reduced inpatient LOS observed with BACC compared to Autograft in adults with DPT burns may translate into reduced burden on the healthcare system, reduced costs for inpatient burn treatment, and clinical benefits for patients.

4.
J Proteome Res ; 23(10): 4674-4683, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39319515

RESUMEN

Metabolic dysfunction plays a crucial role in the pathogenesis of glaucoma. In this study, we used Olink proteomics profiling to identify potential biomarkers for glaucoma. Aqueous humor samples were obtained from 44 cataract patients and 44 glaucoma patients. We identified 84 differentially expressed metabolic proteins between the glaucoma and the cataract group. Gene Ontology enrichment analysis highlighted the involvement of these proteins in ER-associated degradation pathway, regulation of interleukin-13 production, and DNA damage response pathway. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis further revealed links to pathways, such as tyrosine and pyrimidine metabolism. Among these, ALDH1A1 emerged as a candidate with a significant diagnostic potential for glaucoma. ALDH1A1 also exhibited a prominent role in the protein-protein interaction network. Elevated levels of ALDH1A1 in the aqueous humor of glaucoma patients were confirmed both in clinical samples and in an ischemia/reperfusion model. Functional assays confirmed that elevated ALDH1A1 induced retinal ganglion cell (RGC) apoptosis in vitro and demonstrated its pro-apoptotic role in RGCs in vivo. Collectively, these findings not only underscore the significance of ALDH1A1 in glaucoma but also provide valuable insights into clinical decision-making and therapeutic strategies.


Asunto(s)
Familia de Aldehído Deshidrogenasa 1 , Humor Acuoso , Biomarcadores , Glaucoma , Proteómica , Humanos , Glaucoma/metabolismo , Glaucoma/genética , Glaucoma/patología , Biomarcadores/metabolismo , Proteómica/métodos , Humor Acuoso/metabolismo , Familia de Aldehído Deshidrogenasa 1/metabolismo , Familia de Aldehído Deshidrogenasa 1/genética , Retinal-Deshidrogenasa/metabolismo , Retinal-Deshidrogenasa/genética , Femenino , Masculino , Mapas de Interacción de Proteínas , Apoptosis/genética , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología , Anciano , Persona de Mediana Edad , Animales , Catarata/metabolismo , Catarata/genética
5.
J Dent Sci ; 19(4): 2057-2064, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39347046

RESUMEN

Background/purpose: Challenges exist regarding the bonding efficiency of polyaryletherketone (PAEK), a high-performance thermoplastic, attributed to its chemical inertness and hydrophobic surface, hindering effective bonding with resin-matrix cement. This research explored the impact of handheld nonthermal plasma (HNP), under varying operational parameters, on PAEK surface wettability and changes in bonding performance with cement. Materials and methods: Three types of disc-shaped PEAK specimens were prepared, with surface treatments categorized as grinding, airborne-particle abrasion (APB), and HNP. Surface wettability was analyzed using a contact angle analyzer (n = 10). Specimens were bonded with resin cement and subjected to artificial aging tests: distilled water bath (NA), thermocycling, and highly accelerated stress tests (n = 10 for each test). Shear bond strength (SBS) was measured, failure modes were analyzed, and statistical analyses were conducted. Results: The HNP markedly improved PAEK surface wettability, achieving superhydrophilicity (P < 0.05). This effect intensified with extended operation times (30 or 60 s) and reduced elapsed times (<30 s). HNP-treated PAEK exhibited higher SBS than APB (P < 0.05) and maintained bonding durability after artificial aging, particularly in ketone-enriched variants. Failure analysis revealed predominantly adhesive failure under APB-NA treatment, mixture failures under HNP-NA treatment and postaging, but no cohesive failure. Conclusion: The HNP device benefits dental settings by transforming the PAEK surface into superhydrophilic properties, thereby improving PAEK-cement bonding. It significantly enhances bond durability within 30 s of operation and after a 30 s elapsed period. It is noteworthy that ketone-enriched PAEK demonstrates markedly improved bonding performance.

6.
Angew Chem Int Ed Engl ; : e202411794, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39135198

RESUMEN

The photoconversion of CO2 into valuable chemical products using solar energy is a promising strategy to address both energy and environmental challenges. However, the strongly adsorbed CO2 frequently impedes the seamless advancement of the subsequent reaction by significantly increasing the reaction activation energy. Here, we present a BiFeO3 material with lattice strain that collaboratively regulates the d/p-2π* orbitals hybridization between metal sites and *CO2 as well as *COOH intermediates to achieve rapid conversion of solidly adsorbed CO2 to critical *COOH intermediates, accelerating the overall CO2 reduction kinetics. Quasi in situ X-ray photoelectron spectroscopy and in situ Fourier Transform infrared spectroscopy combined with theoretical calculation reveals that the optimized Fe sites enhance the adsorption and activation effect of CO2, and continuous internal electrons are rapidly transferred to the reaction sites and injected into the surface *CO2 and *COOH under the condition of illumination, which promotes the rapid formation and stability of *COOH. Certainly, the performance of CO2 photoreduction to CO is improved by 12.81-fold compared with the base material. This work offers a new perspective for the rapid photoreduction process of strongly adsorbed CO2.

7.
J Clin Pharmacol ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39141421

RESUMEN

This parallel-group, open-label Phase I study evaluated the effect of mild to moderate hepatic impairment on pharmacokinetics (PK), pharmacodynamics (PD), and safety of a single oral dose of SHR4640. Participants with mild or moderate hepatic impairment were enrolled, with each cohort consisting of eight individuals, alongside eight well-matched controls with normal hepatic function. The participants were administered 10 mg SHR4640, and blood samples were collected for PK evaluation over 72 h. Additionally, serum uric acid (sUA) levels were measured to assess PD changes. Safety was evaluated through adverse events, laboratory tests, vital signs, and electrocardiograms. The Cmax of SHR4640 decreased by 15.0% in the mild hepatic impairment group (geometric least squares means of the ratios [GMR] = 0.850, 90% CI: 0.701-1.03) and by 17.5% in the moderate hepatic impairment group (GMR = 0.825, 90% CI: 0.681-1.00). These reductions were not statistically significant compared to the normal hepatic function group. AUC0-t and AUC0-inf were similar across all groups, indicating that overall exposure to the drug was not clinical significantly affected by hepatic impairment. Apparent clearance and volume of distribution of SHR4640 showed no association with the severity of hepatic impairment as measured by the Child-Pugh score. There were no significant differences in the changes in sUA levels from baseline across different levels of hepatic function. SHR4640 is well tolerated in participants with mild or moderate hepatic impairment. Mild and moderate hepatic impairment did not have a clinically relevant impact on PK, PD, and safety of SHR4640. SHR4640 can be used in patients with mild to moderate hepatic impairment without the need for dose adjustment.

8.
APL Bioeng ; 8(3): 036110, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39165611

RESUMEN

Cartilage damage, a common cause of osteoarthritis, requires medical imaging for accurate diagnosis of pathological changes. However, current instruments can acquire limited imaging information due to sensitivity and resolution issues. Therefore, multimodal imaging is considered an alternative strategy to provide valuable images and analyzes from different perspectives. Among all biomaterials, gold nanomaterials not only exhibit outstanding benefits as drug carriers, in vitro diagnostics, and radiosensitizers, but are also widely used as contrast agents, particularly for tumors. However, their potential for imaging cartilage damage is rarely discussed. In this study, we developed a versatile iodinated gadolinium-gold nanomaterial, AuNC@BSA-Gd-I, and its radiolabeled derivative, AuNC@BSA-Gd-131I, for cartilage detection. With its small size, negative charge, and multimodal capacities, the probe can penetrate damaged cartilage and be detected or visualized by computed tomography, MRI, IVIS, and gamma counter. Additionally, the multimodal imaging potential of AuNC@BSA-Gd-I was compared to current multifunctional gold nanomaterials containing similar components, including anionic AuNC@BSA, AuNC@BSA-I, and AuNC@BSA-Gd as well as cationic AuNC@CBSA. Due to their high atomic numbers and fluorescent emission, AuNC@BSA nanomaterials could provide fundamental multifunctionality for imaging. By further modifying AuNC@BSA with additional imaging materials, their application could be extended to various types of medical imaging instruments. Nonetheless, our findings showed that each of the current nanomaterials exhibited excellent abilities for imaging cartilage with their predominant imaging modalities, but their versatility was not comparable to that of AuNC@BSA-Gd-I. Thus, AuNC@BSA-Gd-I could be served as a valuable tool in multimodal imaging strategies for cartilage assessment.

9.
J Environ Sci (China) ; 146: 39-54, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38969461

RESUMEN

To improve the selective separation performance of silica nanofibers (SiO2 NFs) for cesium ions (Cs+) and overcome the defects of Prussian blue nanoparticles (PB NPs), PB/SiO2-NH2 NFs were prepared to remove Cs+ from water. Among them, 3-aminopropyltriethoxysilane (APTES) underwent an alkylation reaction with SiO2, resulting in the formation of a dense Si-O-Si network structure that decorated the surface of SiO2 NFs. Meanwhile, the amino functional groups in APTES combined with Fe3+ and then reacted with Fe2+ to form PB NPs, which anchored firmly on the aminoated SiO2 NFs surface. In our experiment, the maximum adsorption capacity of PB/SiO2-NH2 NFs was 111.38 mg/g, which was 31.5 mg/g higher than that of SiO2 NFs. At the same time, after the fifth cycle, the removal rate of Cs+ by PB/SiO2-NH2 NFs adsorbent was 75.36% ± 3.69%. In addition, the adsorption isotherms and adsorption kinetics of PB/SiO2-NH2 NFs were combined with the Freundlich model and the quasi-two-stage fitting model, respectively. Further mechanism analysis showed that the bond between PB/SiO2-NH2 NFs and Cs+ was mainly a synergistic action of ion exchange, electrostatic adsorption and membrane separation.


Asunto(s)
Cesio , Ferrocianuros , Nanofibras , Nanopartículas , Contaminantes Químicos del Agua , Purificación del Agua , Ferrocianuros/química , Nanofibras/química , Contaminantes Químicos del Agua/química , Cesio/química , Adsorción , Purificación del Agua/métodos , Nanopartículas/química , Dióxido de Silicio/química , Cinética , Propilaminas/química , Silanos
10.
J Dent Sci ; 19(3): 1328-1337, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39035309

RESUMEN

Anterior open bite (AOB), characterized by the lack of vertical overlap between upper and lower anterior teeth, poses a considerable challenge in orthodontics. The condition depends on many factors that combine to render it difficult to achieve post treatment stability. AOB is commonly classified as dental, skeletal, or functional on the basis of the clinical presentation and causative factors. Traditionally, skeletal AOB necessitates surgical intervention, whereas nonsurgical approaches such as extrusion arches and the Multiloop Edgewise Archwire Technique (MEAW) can be employed in more straightforward cases. Functional appliances are reserved for situations in which a patient's growth potential offers the possibility of effectively addressing AOB. This review presents a strategic treatment approach for addressing AOB, taking into account the classification and severity of the condition. The proposed SHE framework describes the use of mini-screws (S) for anchorage and vertical control, encouragement to correct habits (H), and the utilization of extractions and elastics (E). By incorporating extra-radicular mini-screws, AOB closure is achieved through anterior retraction in extraction cases or whole arch distalization of dentition with elastics in non-extraction cases. This framework emphasizes habit correction through a regimen of oral myofunctional therapy (OMT) and habit-correcting appliances to enhance posttreatment stability. This review suggests that nonsurgical correction is viable in the majority of cases, whereas surgical intervention should be reserved for severe cases of skeletal vertical overgrowth or horizontal discrepancies.

11.
World J Clin Cases ; 12(21): 4770-4776, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39070833

RESUMEN

BACKGROUND: According to the World Health Organization analgesic ladder, cancer-related pain generally begins with pharmacotherapy in a stepwise approach. Nevertheless, some patients continue to experience poorly controlled pain despite medications, particularly when considering adverse effects and self-care quality. Percutaneous cervical cordotomy is an alternative interventional procedure for unremitting unilateral intractable cancer-related pain. CASE SUMMARY: The patient was diagnosed with lung cancer with destruction of the brachial plexus and ribs. For 2 mo, the patient experienced progressive severe weakness and pain in the right upper extremity. Notably, the pain intensity reached an extreme level, particularly when lying supine, even under heavy sedation. This heightened pain response posed a significant challenge; as a result, the patient was unable to undergo further evaluation through magnetic resonance imaging. Ultimately, he underwent percutaneous cervical cordotomy for symptom relief, resulting in complete resolution of right arm pain. After a 3-mo follow-up, the pain did not recur, and only a flurbiprofen local patch was required for mild scapular tightness. CONCLUSION: Cordotomy, under careful patient selection, appears to enhance the quality of life of patients with unilateral cancer-related pain.

12.
Talanta ; 277: 126434, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38879946

RESUMEN

Methyl paraoxon (MP) is a highly toxic, efficient and broad-spectrum organophosphorus pesticide, which poses significant risks to ecological environment and human health. Many detection methods for MP are based on the enzyme catalytic or inhibition effect. But natural biological enzymes are relatively expensive and easy to be inactivated with a short service life. As a unique tool of nanotechnology with enzyme-like characteristics, nanozyme has attracted increasing concern. However, a large proportion of nanozymes lack the intrinsic specificity, becoming a main barrier of constraining their use in biochemical analysis. Here, we use a one-pot reverse microemulsion polymerization combine the gold nanoclusters (AuNCs) with molecularly imprinted polymers (MIPs), polydopamine (PDA) and hollow CeO2 nanospheres to synthesize the bright red-orange fluorescence probe (CeO2@PDA@AuNCs-MIPs) with high phosphatase-like activity for selective detection of MP. The hollow structure possesses a specific surface area and porous matrix, which not only increases the exposure of active sites but also enhances the efficiency of mass and electron transport. Consequently, this structure significantly enhances the catalytic activity by reducing transport distances. The introduced MIPs provide the specific recognition sites for MP. And Ce (III) can excite aggregation induced emission of AuNCs and enhance the fluorescent signal. The absolute fluorescence quantum yield (FLQY) of CeO2@PDA@AuNCs-MIPs (1.41 %) was 12.8-fold higher than that of the GSH-AuNCs (0.11 %). With the presence of MP, Ce (IV)/Ce (III) species serve as the active sites to polarize and hydrolyze phosphate bonds to generate p-nitrophenol (p-NP), which can quench the fluorescent signal through the inner-filter effect. The as-prepared CeO2@PDA@AuNCs-MIPs nanozyme-based fluorescence method for MP detection displayed superior analytical performances with wide linearities range of 0.45-125 nM and the detection limit of 0.15 nM. Furthermore, the designed method offers satisfactory practical application ability. The developed method is simple and effective for the in-field detection.


Asunto(s)
Oro , Polímeros Impresos Molecularmente , Polímeros , Espectrometría de Fluorescencia , Polímeros Impresos Molecularmente/química , Polímeros/química , Espectrometría de Fluorescencia/métodos , Oro/química , Nanopartículas del Metal/química , Cerio/química , Colorantes Fluorescentes/química , Monoéster Fosfórico Hidrolasas/metabolismo , Monoéster Fosfórico Hidrolasas/química , Paraoxon/análisis , Paraoxon/análogos & derivados , Paraoxon/química , Indoles/química , Fluorescencia , Límite de Detección
13.
J Proteome Res ; 23(7): 2532-2541, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38902972

RESUMEN

Metabolic dysfunction is recognized as a contributing factor in the pathogenesis of wet age-related macular degeneration (wAMD). However, the specific metabolism-related proteins implicated in wAMD remain elusive. In this study, we assessed the expression profiles of 92 metabolism-related proteins in aqueous humor (AH) samples obtained from 44 wAMD patients and 44 cataract control patients. Our findings revealed significant alterations in the expression of 60 metabolism-related proteins between the two groups. Notably, ANGPTL7 and METRNL displayed promising diagnostic potential for wAMD, as evidenced by area under the curve values of 0.88 and 0.85, respectively. Subsequent validation studies confirmed the upregulation of ANGPTL7 and METRNL in the AH of wAMD patients and in choroidal neovascularization (CNV) models. Functional assays revealed that increased ANGPTL7 and METRNL played a pro-angiogenic role in endothelial biology by promoting endothelial cell proliferation, migration, tube formation, and spouting in vitro. Moreover, in vivo studies revealed the pro-angiogenic effects of ANGPTL7 and METRNL in CNV formation. In conclusion, our findings highlight the association between elevated ANGPTL7 and METRNL levels and wAMD, suggesting their potential as novel predictive and diagnostic biomarkers for this condition. These results underscore the significance of ANGPTL7 and METRNL in the context of wAMD pathogenesis and offer new avenues for future research and therapeutic interventions.


Asunto(s)
Proteína 7 Similar a la Angiopoyetina , Proteínas Similares a la Angiopoyetina , Humor Acuoso , Biomarcadores , Degeneración Macular Húmeda , Humor Acuoso/metabolismo , Humanos , Biomarcadores/metabolismo , Masculino , Degeneración Macular Húmeda/metabolismo , Degeneración Macular Húmeda/genética , Femenino , Proteínas Similares a la Angiopoyetina/metabolismo , Proteínas Similares a la Angiopoyetina/genética , Neovascularización Coroidal/metabolismo , Neovascularización Coroidal/genética , Neovascularización Coroidal/patología , Anciano , Proliferación Celular , Animales , Movimiento Celular , Ratones
14.
Langmuir ; 40(25): 13190-13206, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38864706

RESUMEN

The high-gravity reactor, known for its excellent mass transfer capability, plays a crucial role in the carbon capture process. The wire mesh packing serves as the core structure for enhancing mass transfer performance. Understanding the underlying dispersion mechanism requires a thorough exploration of the dynamics of droplet impact on a single fiber. This work aimed to numerically study the process of a droplet impacting a single fiber by applying the volume of fluid method. The effects of initial velocity (u0), initial diameter (D0), impact eccentric distance (e), and impact angle (θ) on the deformation evolution and dispersion characteristics of a droplet impacting a single fiber were systematically studied. Central or vertical impacts can be categorized into four main stages: splitting, merging, stretching, and breaking. Meanwhile, asynchronous breaking, sliding splitting, and oblique stages were observed during eccentric and nonvertical impacts. Subsequently, dimensionless time (t*) and the rate of increase of the gas-liquid interfacial area (η) were introduced to quantitatively analyze the dispersion characteristics postimpact. Increasing the initial velocity, reducing the droplet diameter, minimizing the impact eccentric distance, and maximizing the impact angle all contribute to enhanced dispersion performance. A correlation for the maximum increase rate of the gas-liquid interfacial area of the droplet was proposed, with errors less than ±15%. Finally, the deformation mechanism of droplet impact on a fiber was summarized by analyzing the influences of differential pressure inside and outside the liquid film, as well as gas vortices.

15.
Drug Des Devel Ther ; 18: 1855-1864, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38828023

RESUMEN

Purpose: Henagliflozin is an original, selective sodium-glucose cotransporter 2 (SGLT2) inhibitor. Hydrochlorothiazide (HCTZ) is a common anti-hypertensive drug. This study aimed to evaluate the potential interaction between henagliflozin and HCTZ. Methods: This was a single-arm, open-label, multi-dose, three-period study that was conducted in healthy Chinese volunteers. Twelve subjects were treated in three periods, period 1: 25 mg HCTZ for four days, period 2: 10 mg henagliflozin for four days and period 3: 25 mg HCTZ + 10 mg henagliflozin for four days. Blood samples and urine samples were collected before and up to 24 hours after drug administrations on day 4, day 10 and day 14. The plasma concentrations of henagliflozin and HCTZ were analyzed using LC-MS/MS. The urine samples were collected for pharmacodynamic glucose and electrolyte analyses. Tolerability was also evaluated. Results: The 90% CI of the ratio of geometric means (combination: monotherapy) for AUCτ,ss of henagliflozin and HCTZ was within the bioequivalence interval of 0.80-1.25. For henagliflozin, co-administration increased Css, max by 24.32% and the 90% CI of the GMR was (108.34%, 142.65%), and the 24-hour urine volume and glucose excretion decreased by 0.43% and 19.6%, respectively. For HCTZ, co-administration decreased Css, max by 19.41% and the 90% CI of the GMR was (71.60%, 90.72%), and the 24-hour urine volume and urinary calcium, potassium, phosphorus, chloride, and sodium excretion decreased by 11.7%, 20.8%, 11.8%, 11.9%, 22.0% and 15.5%, respectively. All subjects (12/12) reported adverse events (AEs), but the majority of theses AEs were mild and no serious AEs were reported. Conclusion: Although Css,max was affected by the combination of henagliflozin and HCTZ, there was no clinically meaningful safety interaction between them. Given these results, coadministration of HCTZ should not require any adaptation of henagliflozin dosing. Trial Registration: ClinicalTrials.gov NCT06083116.


Asunto(s)
Interacciones Farmacológicas , Voluntarios Sanos , Hidroclorotiazida , Adulto , Femenino , Humanos , Masculino , Adulto Joven , Relación Dosis-Respuesta a Droga , Pueblos del Este de Asia , Glucósidos/administración & dosificación , Glucósidos/farmacocinética , Glucósidos/farmacología , Hidroclorotiazida/administración & dosificación , Hidroclorotiazida/farmacocinética , Hidroclorotiazida/farmacología , Inhibidores del Cotransportador de Sodio-Glucosa 2/administración & dosificación , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacocinética , China
16.
Molecules ; 29(11)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38893469

RESUMEN

Hepatocellular carcinoma (HCC) results in the abnormal regulation of cellular metabolic pathways. Constraint-based modeling approaches can be utilized to dissect metabolic reprogramming, enabling the identification of biomarkers and anticancer targets for diagnosis and treatment. In this study, two genome-scale metabolic models (GSMMs) were reconstructed by employing RNA sequencing expression patterns of hepatocellular carcinoma (HCC) and their healthy counterparts. An anticancer target discovery (ACTD) framework was integrated with the two models to identify HCC targets for anticancer treatment. The ACTD framework encompassed four fuzzy objectives to assess both the suppression of cancer cell growth and the minimization of side effects during treatment. The composition of a nutrient may significantly affect target identification. Within the ACTD framework, ten distinct nutrient media were utilized to assess nutrient uptake for identifying potential anticancer enzymes. The findings revealed the successful identification of target enzymes within the cholesterol biosynthetic pathway using a cholesterol-free cell culture medium. Conversely, target enzymes in the cholesterol biosynthetic pathway were not identified when the nutrient uptake included a cholesterol component. Moreover, the enzymes PGS1 and CRL1 were detected in all ten nutrient media. Additionally, the ACTD framework comprises dual-group representations of target combinations, pairing a single-target enzyme with an additional nutrient uptake reaction. Additionally, the enzymes PGS1 and CRL1 were identified across the ten-nutrient media. Furthermore, the ACTD framework encompasses two-group representations of target combinations involving the pairing of a single-target enzyme with an additional nutrient uptake reaction. Computational analysis unveiled that cell viability for all dual-target combinations exceeded that of their respective single-target enzymes. Consequently, integrating a target enzyme while adjusting an additional exchange reaction could efficiently mitigate cell proliferation rates and ATP production in the treated cancer cells. Nevertheless, most dual-target combinations led to lower side effects in contrast to their single-target counterparts. Additionally, differential expression of metabolites between cancer cells and their healthy counterparts were assessed via parsimonious flux variability analysis employing the GSMMs to pinpoint potential biomarkers. The variabilities of the fluxes and metabolite flow rates in cancer and healthy cells were classified into seven categories. Accordingly, two secretions and thirteen uptakes (including eight essential amino acids and two conditionally essential amino acids) were identified as potential biomarkers. The findings of this study indicated that cancer cells exhibit a higher uptake of amino acids compared with their healthy counterparts.


Asunto(s)
Biomarcadores de Tumor , Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Humanos , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Modelos Biológicos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Antineoplásicos/farmacología , Redes y Vías Metabólicas , Proliferación Celular/efectos de los fármacos
17.
Adv Mater ; 36(33): e2401052, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38923689

RESUMEN

Nickel-rich layered oxide cathode material LiNixCoyMnzO2 (NCM) has emerged as a promising candidate for next-generation lithium-ion batteries (LIBs). These cathode materials possess high theoretical specific capacity, fast electron/ion transfer rate, and high output voltage. However, their potential is impeded by interface instability, irreversible phase transition, and the resultant significant capacity loss, limiting their practical application in LIBs. In this work, a simple and scalable approach is proposed to prepare gradient cathode material (M-NCM) with excellent structural stability and rate performance. Taking advantage of the strong coordination of Ni2+ with ammonia and the reduction reaction of KMnO4, the elemental compositions of the Ni-rich cathode are reasonably adjusted. The resulted gradient compositional design plays a crucial role in stabilizing the crystal structure, which effectively mitigates Li/Ni mixing and suppresses unwanted surficial parasitic reactions. As a result, the M-NCM cathode maintains 98.6% capacity after 200 cycles, and a rapid charging ability of 107.5 mAh g-1 at 15 C. Furthermore, a 1.2 Ah pouch cell configurated with graphite anode demonstrates a lifespan of over 500 cycles with only 8% capacity loss. This work provides a simple and scalable approach for the in situ construction of gradient cathode materials via cooperative coordination and deposition reactions.

18.
Mol Med ; 30(1): 66, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773377

RESUMEN

BACKGROUND: The current treatment of osteogenesis imperfecta (OI) is imperfect. Our study thus delves into the potential of using Dickkopf-1 antisense (DKK1-AS) to treat OI. METHODS: We analysed serum DKK1 levels and their correlation with lumbar spine and hip T-scores in OI patients. Comparative analyses were conducted involving bone marrow stromal cells (BMSCs) and bone tissues from wild-type mice, untreated OI mice, and OI mice treated with DKK1-ASor DKK1-sense (DKK1-S). RESULTS: Significant inverse correlations were noted between serum DKK1 levels and lumbar spine (correlation coefficient = - 0.679, p = 0.043) as well as hip T-scores (correlation coefficient = - 0.689, p = 0.042) in OI patients. DKK1-AS improved bone mineral density (p = 0.002), trabecular bone volume/total volume fraction (p < 0.001), trabecular separation (p = 0.010), trabecular thickness (p = 0.001), trabecular number (p < 0.001), and cortical thickness (p < 0.001) in OI mice. DKK1-AS enhanced the transcription of collagen 1α1, osteocalcin, runx2, and osterix in BMSC from OI mice (all p < 0.001), resulting in a higher von Kossa-stained matrix area (p < 0.001) in ex vivo osteogenesis assays. DKK1-AS also reduced osteoclast numbers (p < 0.001), increased ß-catenin and T-cell factor 4 immunostaining reactivity (both p < 0.001), enhanced mineral apposition rate and bone formation rate per bone surface (both p < 0.001), and decreased osteoclast area (p < 0.001) in OI mice. DKK1-AS upregulated osteoprotegerin and downregulated nuclear factor-kappa B ligand transcription (both p < 0.001). Bone tissues from OI mice treated with DKK1-AS exhibited significantly higher breaking force compared to untreated OI mice (p < 0.001). CONCLUSIONS: Our study elucidates that DKK1-AS has the capability to enhance bone mechanical properties, restore the transcription of osteogenic genes, promote osteogenesis, and inhibit osteoclastogenesis in OI mice.


Asunto(s)
Modelos Animales de Enfermedad , Péptidos y Proteínas de Señalización Intercelular , Osteogénesis Imperfecta , Animales , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Osteogénesis Imperfecta/metabolismo , Ratones , Humanos , Femenino , Masculino , Densidad Ósea , Osteogénesis , Células Madre Mesenquimatosas/metabolismo
19.
J Clin Pharmacol ; 64(8): 1015-1022, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38686508

RESUMEN

Proline henagliflozin, a novel selective inhibitor of sodium glucose cotransporter 2, is a treatment for type 2 diabetes mellitus. We designed a parallel-group, open-label, and multicenter study to evaluate the pharmacokinetic (PK), pharmacodynamic (PD), and safety profiles of henagliflozin in Chinese subjects with varying degrees of liver dysfunction. Thirty-two subjects were enrolled and divided into four groups based on liver function (normal liver function, mild, moderate, or severe liver dysfunction). The area under the plasma concentration from time zero to infinity of henagliflozin in subjects with mild liver dysfunction, moderate liver dysfunction, and severe liver dysfunction compared with normal liver function was increased by 137%, 197%, and 204%, respectively. The maximum plasma concentration was also increased by 123%, 129%, and 139%, respectively. PK parameters of three metabolites varied to different degrees in the liver dysfunction groups than in the normal liver function group. The mean accumulative excretion amounts and fraction of dose excreted in urine expressed as a percentage were all increased with the decrease of liver function. The PD parameters were significantly higher in liver dysfunction groups than those in the normal liver function group. However, the urine creatinine (UCr) was not significantly different among the groups. No notable adverse events or adverse drug reactions were observed. Due to the higher exposures in subjects with liver dysfunction, the benefit: risk ratio should be individually assessed because the long-term safety profile and efficacy have not been specifically studied in this population.


Asunto(s)
Hepatopatías , Humanos , Masculino , Persona de Mediana Edad , Femenino , Adulto , Hepatopatías/metabolismo , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacocinética , Inhibidores del Cotransportador de Sodio-Glucosa 2/efectos adversos , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Pueblo Asiatico , Hipoglucemiantes/farmacocinética , Hipoglucemiantes/efectos adversos , Hipoglucemiantes/uso terapéutico , Glucósidos/farmacocinética , Glucósidos/efectos adversos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Área Bajo la Curva , Adulto Joven , Pueblos del Este de Asia , Glicósidos
20.
Antioxidants (Basel) ; 13(4)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38671918

RESUMEN

Imbalanced osteogenic cell-mediated bone gain and osteoclastic remodeling accelerates the development of osteoporosis, which is the leading risk factor of disability in the elderly. Harmonizing the metabolic actions of bone-making cells and bone resorbing cells to the mineralized matrix network is required to maintain bone mass homeostasis. The tricarboxylic acid (TCA) cycle in mitochondria is a crucial process for cellular energy production and redox homeostasis. The canonical actions of TCA cycle enzymes and intermediates are indispensable in oxidative phosphorylation and adenosine triphosphate (ATP) biosynthesis for osteogenic differentiation and osteoclast formation. Knockout mouse models identify these enzymes' roles in bone mass and microarchitecture. In the noncanonical processes, the metabolites as a co-factor or a substrate involve epigenetic modification, including histone acetyltransferases, DNA demethylases, RNA m6A demethylases, and histone demethylases, which affect genomic stability or chromatin accessibility for cell metabolism and bone formation and resorption. The genetic manipulation of these epigenetic regulators or TCA cycle intermediate supplementation compromises age, estrogen deficiency, or inflammation-induced bone mass loss and microstructure deterioration. This review sheds light on the metabolic functions of the TCA cycle in terms of bone integrity and highlights the crosstalk of the TCA cycle and redox and epigenetic pathways in skeletal tissue metabolism and the intermediates as treatment options for delaying osteoporosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA