Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 25807, 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-39468250

RESUMEN

Separating the dam body, spillway, and other structures from the point cloud in the dam area is an important step in dam deformation monitoring. Manual segmentation is time consuming and inaccurate. This study proposes a point cloud segmentation neural network model based on normal vector optimization suitable for dam environment: (1) This model utilizes the voxel uniform sampling method of equal length cubes to solve the problem of uneven point cloud density caused by wide range and long-distance measurement during point cloud measurement in dam areas. (2) Designed block input and combined output modules in the model, achieving efficient input of large volume point cloud and eliminating the impact of interpolation points offset during seq2seq model decoding process. (3) In response to the diverse characteristics of point cloud normal vectors presented by vegetation, rock mass, and complex dam structures in the dam area, this paper proposes an adaptive radius plane fitting vector estimation method based on eigenvalue method to improve the accuracy of segmentation. The experiment on the prototype arch dam shows that the proposed normal estimation method improves the classification accuracy of PointNet + + from 96.26 to 98.27%. Compared with the other three normal estimation methods (2-jets, Hough CNN, iterative PCA), the overall accuracy is improved by 0.82%, 1.22%, and 0.22%, and the joint average intersection is improved by 0.0293, 0.0325, and 0.0104. The prototype arch dam experiment shows that our proposed method has a segmentation accuracy of 98.27%. Compared with 2-jets, Hough CNN, and iterative PCA, the overall accuracy has been improved by 0.82%, 1.22%, and 0.22%. This study provides a high-precision segmentation scheme for applications such as deformation detection of dam components based on point clouds.

2.
Sensors (Basel) ; 24(20)2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-39460151

RESUMEN

High-resolution remote sensing imagery, reaching meter or sub-meter levels, provides essential data for extracting and identifying road information. However, rural roads are often narrow, elongated, and have blurred boundaries, with textures that resemble surrounding environments such as construction sites, vegetation, and farmland. These features often lead to incomplete extraction and low extraction accuracy of rural roads. To address these challenges, this study introduces the RC-MSFNet model, based on the U-Net architecture, to enhance rural road extraction performance. The RC-MSFNet model mitigates the vanishing gradient problem in deep networks by incorporating residual neural networks in the downsampling stage. In the upsampling stage, a connectivity attention mechanism is added after dual convolution layers to improve the model's ability to capture road completeness and connectivity. Additionally, the bottleneck section replaces the traditional dual convolution layers with a multi-scale fusion atrous convolution module to capture features at various scales. The study focuses on rural roads in the Xiong'an New Area, China, using high-resolution imagery from China's Gaofen-2 satellite to construct the XARoads rural road dataset. Roads were extracted from the XARoads dataset and DeepGlobe public dataset using the RC-MSFNet model and compared with some models such as U-Net, FCN, SegNet, DeeplabV3+, R-Net, and RC-Net. Experimental results showed that: (1) The proposed method achieved precision (P), intersection over union (IOU), and completeness (COM) scores of 0.8350, 0.6523, and 0.7489, respectively, for rural road extraction in Xiong'an New Area, representing precision improvements of 3.8%, 6.78%, 7.85%, 2.14%, 0.58%, and 2.53% over U-Net, FCN, SegNet, DeeplabV3+, R-Net, and RC-Net. (2) The method excelled at extracting narrow roads and muddy roads with unclear boundaries, with fewer instances of omission or false extraction, demonstrating advantages in complex rural terrain and areas with indistinct road boundaries. Accurate rural road extraction can provide valuable reference data for urban development and planning in the Xiong'an New Area.

3.
Mol Cancer Ther ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39087485

RESUMEN

KRAS is the most frequently dysregulated oncogene with high prevalence in NSCLC, colorectal cancer, and pancreatic cancer. FDA-approved sotorasib and adagrasib provide breakthrough therapies for cancer patients with KRASG12C mutation. However, there is still high unmet medical need for new agents targeting broader KRAS-driven tumors. An emerging and promising opportunity is to develop a pan KRAS inhibitor by suppressing the upstream protein SOS1. SOS1 is a key activator of KRAS and facilitates the conversion of GDP-bound KRAS state to GTP-bound KRAS state. Binding to its catalytic domain, small molecule SOS1 inhibitor has demonstrated the ability to suppress KRAS activation and cancer cell proliferation. RGT-018, a potent and selective SOS1 inhibitor, was identified with optimal drug-like properties. In vitro, RGT-018 blocked the interaction of KRAS:SOS1 with single digit nM potency and is highly selective against SOS2. RGT-018 inhibited KRAS signaling and the proliferation of a broad spectrum of KRAS-driven cancer cells as a single agent in vitro. Further enhanced anti-proliferation activity was observed when RGT-018 was combined with MEK, KRASG12C, EGFR or CDK4/6 inhibitors. Oral administration of RGT-018 inhibited tumor growth and suppressed KRAS signaling in tumor xenografts in vivo. Combination with MEK or KRASG12C inhibitors led to significant tumor regression. Furthermore, RGT-018 overcame the resistance to the approved KRASG12C inhibitors caused by clinically acquired KRAS mutations either as a single agent or in combination. RGT-018 displayed promising pharmacological properties for combination with targeted agents to treat a broader KRAS-driven patient population.

4.
Sci Rep ; 14(1): 19973, 2024 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-39198677

RESUMEN

Osteoblasts and osteoclasts play an important role in maintaining the structural integrity of bone tissue, in which osteoclasts degrade bone structure and osteoblasts restore bone tissue. The imbalance of osteoblast and osteoclast function can lead to many bone-related diseases, such as osteoporosis and inflammatory osteolysis. The drug that can both promote bone formation and inhibit bone loss will be able to treat those diseases. In this study, it was found that LMK-235, an selective HDAC4/5 inhibitor, inhibited the differentiation and maturation of osteoclasts by regulating NF-κB and p-Smad2/3 signaling pathways via inhibition of HDAC4. At the same time, we found that LMK-235 promoted osteoblast mineralization by upregulating Runx2 expression via inhibition of HDAC4. In vivo, LMK-235 was able to alleviate lipopolysaccharide (LPS)-induced calvarial osteolysis and promote the repair of bone defects. Taken together, LMK-235 suppresses osteoclast differentiation and promotes osteoblast formation by inhibiting HDAC4. This may provide a valuable treatment for bone diseases caused by abnormal osteoclast bone resorption and osteoblast bone regeneration.


Asunto(s)
Diferenciación Celular , Histona Desacetilasas , Osteoblastos , Osteoclastos , Osteogénesis , Animales , Ratones , Diferenciación Celular/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Ácidos Hidroxámicos , Lipopolisacáridos/farmacología , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Osteoblastos/metabolismo , Osteoblastos/efectos de los fármacos , Osteoclastos/metabolismo , Osteoclastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Osteólisis/metabolismo , Osteólisis/patología , Pirimidinas , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos
6.
Glob Chang Biol ; 30(7): e17427, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39021313

RESUMEN

Atmospheric nitrogen (N) deposition in forests can affect soil microbial growth and turnover directly through increasing N availability and indirectly through altering plant-derived carbon (C) availability for microbes. This impacts microbial residues (i.e., amino sugars), a major component of soil organic carbon (SOC). Previous studies in forests have so far focused on the impact of understory N addition on microbes and microbial residues, but the effect of N deposition through plant canopy, the major pathway of N deposition in nature, has not been explicitly explored. In this study, we investigated whether and how the quantities (25 and 50 kg N ha-1 year-1) and modes (canopy and understory) of N addition affect soil microbial residues in a temperate broadleaf forest under 10-year N additions. Our results showed that N addition enhanced the concentrations of soil amino sugars and microbial residual C (MRC) but not their relative contributions to SOC, and this effect on amino sugars and MRC was closely related to the quantities and modes of N addition. In the topsoil, high-N addition significantly increased the concentrations of amino sugars and MRC, regardless of the N addition mode. In the subsoil, only canopy N addition positively affected amino sugars and MRC, implying that the indirect pathway via plants plays a more important role. Neither canopy nor understory N addition significantly affected soil microbial biomass (as represented by phospholipid fatty acids), community composition and activity, suggesting that enhanced microbial residues under N deposition likely stem from increased microbial turnover. These findings indicate that understory N addition may underestimate the impact of N deposition on microbial residues and SOC, highlighting that the processes of canopy N uptake and plant-derived C availability to microbes should be taken into consideration when predicting the impact of N deposition on the C sequestration in temperate forests.


Asunto(s)
Carbono , Bosques , Nitrógeno , Microbiología del Suelo , Suelo , Nitrógeno/metabolismo , Carbono/metabolismo , Carbono/análisis , Suelo/química , Amino Azúcares/metabolismo , Amino Azúcares/análisis , Árboles/crecimiento & desarrollo , Árboles/metabolismo
7.
Antonie Van Leeuwenhoek ; 117(1): 102, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012584

RESUMEN

This study represents the first analysis of the bacterial community in chickens affected by swollen head syndrome, utilizing 16S rRNA gene sequencing. Samples were obtained from clinical laying chickens and were examined for the presence of Avibacterium paragallinarum (APG) and Ornithobacterium rhinotracheale (ORT) using conventional polymerase chain reaction (PCR). From the samples, five APG-positive (APG) and APG-negative (N-APG) samples were chosen, along with five specific pathogen-free chickens, for 16S rRNA gene sequencing. Results showed that APG and ORT were widely detected in the chicken samples with swollen head syndrome (SHS, 9/10), while APG was detected in all five specific pathogen-free (SPF) samples. In contrast, conventional PCR sensitivity was found to be inadequate for diagnosis, with only 35.7% (5/14) and 11.1% (1/9) sensitivity for APG and ORT, respectively, based on 16S rRNA gene sequencing data. Furthermore, 16S rRNA gene sequencing was able to quantify the bacteria in the samples, revealing that the relative abundance of APG in the APG group ranged from 2.7 to 81.3%, while the relative abundance of APG in the N-APG group ranged from 0.1 to 21.0%. Notably, a low level of APG was also detected in all 5 SPF samples. The study also identified a significant number of animal and human common bacterial pathogens, including but not limited to Gallibacterium anatis, Riemerella columbina, Enterococcus cecorum, Mycoplasma synoviae, Helicobacter hepaticus, and Staphylococcus lentus. In conclusion, 16S rRNA gene sequencing is a valuable tool for bacterial pathogen diagnosis and the discovery of novel bacterial pathogens, while conventional PCR is not reliable for diagnosis.


Asunto(s)
Pollos , Reacción en Cadena de la Polimerasa , Enfermedades de las Aves de Corral , ARN Ribosómico 16S , ARN Ribosómico 16S/genética , Animales , Pollos/microbiología , Reacción en Cadena de la Polimerasa/métodos , Enfermedades de las Aves de Corral/microbiología , Enfermedades de las Aves de Corral/diagnóstico , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , ADN Bacteriano/genética , Análisis de Secuencia de ADN , Filogenia
8.
Biochem Biophys Res Commun ; 732: 150409, 2024 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-39033550

RESUMEN

INTRODUCTION: WNT1-inducible signalling pathway protein 1 (WISP1) promotes progression of several tumor entities often correlating with worse prognosis. Here its expression regulation and role in the progression of chronic liver diseases (CLD) was investigated. METHODS: WISP1 expression was analyzed in human HCC datasets, in biopsies and serum samples and an HCC patient tissue microarray (TMA) including correlation to clinicopathological parameters. Spatial distribution of WISP1 expression was determined using RNAscope analysis. Regulation of WISP1 expression was investigated in cytokine-stimulated primary mouse hepatocytes (PMH) by array analysis and qRT-PCR. Outcome of WISP1 stimulation was analyzed by IncuCyte S3-live cell imaging, qRT-PCR, and immunoblotting in murine AML12 cells. RESULTS: In a TMA, high WISP1 expression was positively correlated with early HCC stages and male sex. Highest WISP1 expression levels were detected in patients with cirrhosis as compared to healthy individuals, patients with early fibrosis, and non-cirrhotic HCC in liver biopsies, expression datasets and serum samples. WISP1 transcripts were predominantly detected in hepatocytes of cirrhotic rather than tumorous liver tissue. High WISP1 expression was associated with better survival. In PMH, AML12 and HepaRG, WISP1 was identified as a specific TGF-ß1 target gene. Accordingly, expression levels of both cytokines positively correlated in human HCC patient samples. WISP1-stimulation induced the expression of Bcl-xL, PCNA and p21 in AML12 cells. CONCLUSIONS: WISP1 expression is induced by TGF-ß1 in hepatocytes and is associated with cirrhotic liver disease. We propose a crucial role of WISP1 in balancing pro- and anti-tumorigenic effects during premalignant stages of CLD.


Asunto(s)
Proteínas CCN de Señalización Intercelular , Carcinogénesis , Regulación Neoplásica de la Expresión Génica , Cirrosis Hepática , Neoplasias Hepáticas , Microambiente Tumoral , Proteínas CCN de Señalización Intercelular/genética , Proteínas CCN de Señalización Intercelular/metabolismo , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Perfilación de la Expresión Génica , Análisis de Supervivencia , Humanos , Masculino , Femenino , Animales , Ratones , Hepatocitos/metabolismo , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Apoptosis/genética , Proliferación Celular/genética , Puntos de Control del Ciclo Celular/genética , Microambiente Tumoral/genética , Carcinogénesis/genética
9.
Eur J Med Chem ; 275: 116570, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38878517

RESUMEN

Broussonetine S (9), its C-1' and C-10' stereoisomers, and their corresponding enantiomers have been synthesized from enantiomeric arabinose-derived cyclic nitrones, with cross metathesis (CM), epoxidation and Keck asymmetric allylation as key steps. Glycosidase inhibition assays showed that broussonetine S (9) and its C-10' epimer (10'-epi-9) were nanomolar inhibitors of bovine liver ß-galactosidase and ß-glucosidase; while their C-1' stereoisomers were 10-fold less potent towards these enzymes. The glycosidase inhibition results and molecular docking calculations revealed the importance of the configurations of pyrrolidine core and C-1' hydroxyl for inhibition potency and spectra. Together with the docking calculations we previously reported for α-1-C-alkyl-DAB derivatives, we designed and synthesized a series of 6-C-alkyl-DMDP derivatives with very simple alkyl chains. The inhibition potency of these derivatives was enhanced by increasing the length of the side chain, and maintained at nanomolar scale inhibitions of bovine liver ß-glucosidase and ß-galactosidase after the alkyl groups are longer than eight or ten carbons for the (6R)-C-alkyl-DMDP derivatives and their 6S epimers, respectively. Molecular docking calculations indicated that each series of 6-C-alkyl-DMDP derivatives resides in the same active site of ß-glucosidase or ß-galactosidase with basically similar binding conformations, and their C-6 long alkyl chains extend outwards along the hydrophobic groove with similar orientations. The increasing inhibitions of ß-glucosidase and ß-galactosidase with the number of carbon atoms in the side chains may be explained by improved adaptability of longer alkyl chains in the hydrophobic grooves. In addition, the lower ß-glucosidase and ß-galactosidase inhibitions of (6S)-C-alkyl-DMDP derivatives than their C-6 R stereoisomers can be attributed to the misfolding of their alkyl chains and resulted decreased adaptability in the hydrophobic groove. The work reported herein is valuable for design and development of more potent and selective inhibitors of ß-galactosidase and ß-glucosidase, which have potential in treatment of lysosomal storage diseases. Furthermore, part of the 6-C-alkyl-DMDP derivatives and their enantiomers were also tested as potential anti-cancer agents; all the compounds tested were found with moderate cytotoxic effects on MKN45 cells, which would indicate potential applications of these iminosugars in development of novel anticancer agents.


Asunto(s)
Diseño de Fármacos , Inhibidores Enzimáticos , Simulación del Acoplamiento Molecular , beta-Galactosidasa , beta-Glucosidasa , beta-Galactosidasa/antagonistas & inhibidores , beta-Galactosidasa/metabolismo , Bovinos , Animales , Relación Estructura-Actividad , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , beta-Glucosidasa/antagonistas & inhibidores , beta-Glucosidasa/metabolismo , Estructura Molecular , Relación Dosis-Respuesta a Droga , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/síntesis química , Inhibidores de Glicósido Hidrolasas/química
10.
Dev Cell ; 58(24): 2992-3008.e7, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38056451

RESUMEN

The placenta becomes one of the most diversified organs during placental mammal radiation. The main in vitro model for studying mouse trophoblast development is the 2D differentiation model of trophoblast stem cells, which is highly skewed to certain lineages and thus hampers systematic screens. Here, we established culture conditions for the establishment, maintenance, and differentiation of murine trophoblast organoids. Murine trophoblast organoids under the maintenance condition contain stem cell-like populations, whereas differentiated organoids possess various trophoblasts resembling placental ones in vivo. Ablation of Nubpl or Gcm1 in trophoblast organoids recapitulated their deficiency phenotypes in vivo, suggesting that those organoids are valid in vitro models for trophoblast development. Importantly, we performed an efficient CRISPR-Cas9 screening in mouse trophoblast organoids using a focused sgRNA (single guide RNA) library targeting G protein-coupled receptors. Together, our results establish an organoid model to investigate mouse trophoblast development and a practicable approach to performing forward screening in trophoblast lineages.


Asunto(s)
Sistemas CRISPR-Cas , Placenta , Embarazo , Femenino , Ratones , Animales , Sistemas CRISPR-Cas/genética , ARN Guía de Sistemas CRISPR-Cas , Trofoblastos , Diferenciación Celular , Organoides , Mamíferos
11.
Sci China Life Sci ; 66(1): 51-66, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36322324

RESUMEN

Arrhythmogenic cardiomyopathy (ACM) is one of the most common inherited cardiomyopathies, characterized by progressive fibrofatty replacement in the myocardium. However, the cellular origin of cardiac adipocytes in ACM remains largely unknown. Unraveling the cellular source of cardiac adipocytes in ACM would elucidate the underlying pathological process and provide a potential target for therapy. Herein, we generated an ACM mouse model by inactivating desmosomal gene desmoplakin in cardiomyocytes; and examined the adipogenic fates of several cell types in the disease model. The results showed that SOX9+, PDGFRa+, and PDGFRb+ mesenchymal cells, but not cardiomyocytes or smooth muscle cells, contribute to the intramyocardial adipocytes in the ACM model. Mechanistically, Bmp4 was highly expressed in the ACM mouse heart and functionally promoted cardiac mesenchymal-to-adipose transition in vitro.


Asunto(s)
Cardiomiopatías , Corazón , Ratones , Animales , Miocardio/metabolismo , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Adipocitos/metabolismo , Adipocitos/patología , Adipogénesis/fisiología , Obesidad/metabolismo
12.
Plants (Basel) ; 11(24)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36559638

RESUMEN

The nitrogen isotope composition of plants (δ15N) can comprehensively reflect information on climate change and ecosystems' nitrogen cycle. By collecting common herbs and soil samples along the 400 mm isoline of mean annual precipitation (MAP) in the agro-pastoral zone of North China (APZNC) and measuring their δ15N values, the statistical characteristics of foliar δ15N of herbs and the responses of foliar δ15N to the MAP and mean annual temperature (MAT) were analyzed. The results showed that: (1) the δ15N values of all herbs investigated varied from -5.5% to 15.25%. Among them, the δ15N value range of C3 herbs (-5.5~15.00%) was wider than that of C4 herbs (-2.17~15.25%), but the average value (3.27%) of C3 herbs was significantly lower than that of C4 herbaceous plants (5.55%). This difference provides an important method for identifying plants of different photosynthetic types by nitrogen isotope technology. (2) Along the transect from northeast to southwest, the δ15N of both C3 and C4 herbs decreased with the increase in the MAP, but not significantly for C3 herbs. The inverse relationship between the nitrogen isotopic signatures of herbs and MAP is consistent with previous studies. However, the MAP in the APZNC is found to only explain a small amount of the observed variance in the δ15N herbs (C3 herbs: 10.40%; C4 herbs: 25.03%). (3) A strong negative relationship was found between δ15N of herbs and MAT across the transect (C3 herbs: -0.368%/°C; C4 herbs: -0.381%/°C), which was contrary to the global pattern and some regional patterns. There was no significant difference in the δ15N responses of two different photosynthetic herbs to temperature, but the effect of temperature on the variances of δ15N of C3 and C4 herbs was significantly greater than that of precipitation. This suggests that temperature is a key factor affecting foliar δ15N of herbs in this transect. The above findings may be of value to global change researchers studying the processes of the nitrogen cycle and gaining an insight into climate dynamics of the past.

13.
Kidney Dis (Basel) ; 8(4): 275-285, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36157262

RESUMEN

Background: Cognitive impairment, increasingly recognized as a major social burden, is commonly found in chronic kidney disease (CKD) patients. Summary: Vascular damage, uremic toxicity, oxidative stress, and peripheral/central inflammation induced by CKD might be involved in brain lesions and ultimately result in cognitive decline. Uncovering the pathophysiology of CKD-associated cognitive impairment is important for early diagnosis and prevention, which undoubtedly prompts innovative pharmacological treatments. Key Messages: Here, we sequentially review the current understanding and advances in the epidemiology, risk factors, and pathological mechanisms of cognitive impairment in CKD. Furthermore, we summarize the currently available therapeutic strategies for cognitive impairment in CKD.

14.
Front Endocrinol (Lausanne) ; 13: 798434, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35574014

RESUMEN

Objective: To evaluate the pregnancy outcomes of progestin-primed ovarian stimulation (PPOS) protocol for patients with endometrioma underwent in vitro fertilization/intra-cytoplasmic sperm injection embryo transfer (IVF/ICSI-ET). Design: Observational retrospective cohort study. Setting: University affiliated reproductive center. Study Participants: 605 infertile patients with endometrioma underwent IVF/ICSI-ET from January 2016 to March 2021 were included in this study. Methods: Multivariable logistic regression analyses were conducted to determine the independent effect of controlled ovarian stimulation (COS) protocols on reproductive outcomes of first embryo transfer (ET) cycles. The live birth was primary outcome, the implantation rate, biochemical pregnancy, clinical pregnancy and ongoing pregnancy were secondary outcomes. Results: Compared to PPOS protocol, the probability of implantation showed no significant difference with ultra-long gonadotrophin-releasing hormone agonist (GnRHa) protocol and gonadotrophin-releasing hormone antagonist (GnRHant) protocol (OR 1.7, 95% CI 0.9-3.1, OR 1.2, 95% CI 0.7-2.1, respectively). The PPOS protocol was correlated with a significantly lower biochemical pregnancy and clinical pregnancy than ultra-long GnRHa protocol in the multivariable logistic regression analysis (OR 2.3, 95% CI 1.1-4.9, OR 2.4, 95% CI 1.1-5.3, respectively). However, there was no significant difference in terms of biochemical pregnancy, clinical pregnancy and ongoing pregnancy between PPOS and GnRHant protocol (OR 1.4, 95% CI 0.7-2.7, OR 1.3, 95% CI 0.7-2.4, OR 1.1, 95% CI 0.6-2.3, respectively). In addition, compared to PPOS protocol, ultra-long GnRHa protocol and GnRHant protocol demonstrated no statistical difference in ongoing pregnancy (OR 2.0, 95% CI 0.9-4.5, OR 2.1, 95% CI 0.6-2.3, respectively). Notably, the ultra-long GnRHa protocol was associated with a significant higher probability of live birth than PPOS protocol both in crude analysis and multivariable logistic regression analysis (OR 2.6, 95% CI 1.3-5.1, OR 2.5, 95% CI 1.1-5.7, respectively). Nevertheless, no statistical difference was found in live birth between PPOS and GnRHant protocol either in crude analysis and multivariable logistic regression analysis (OR1.2, 95% CI 0.6-2.3, OR 1.2, 95% CI 0.6-2.5, respectively). Conclusions: Based on the reproductive outcomes of the first ET cycles in patients with endometrioma, PPOS protocol may associated with inferior reproductive outcomes in terms of biochemical pregnancy, clinical pregnancy and live birth than ultra-long GnRHa protocol. However, there was no significant difference in implantation rate, clinical pregnancy, ongoing pregnancy and live birth between PPOS and GnRHant protocol.


Asunto(s)
Endometriosis , Progestinas , Endometriosis/tratamiento farmacológico , Femenino , Fertilización In Vitro/métodos , Antagonistas de Hormonas , Humanos , Estudios Observacionales como Asunto , Inducción de la Ovulación/métodos , Embarazo , Estudios Retrospectivos
15.
Adv Mater ; 34(19): e2201411, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35307880

RESUMEN

The development of minimally invasive cardiac patches, either as hemostatic dressing or treating myocardial infarction, is of clinical significance but remains a major challenge. Designing such patches often requires simultaneous consideration of several material attributes, including bioabsorption, non-toxicity, matching the mechanic properties of heart tissues, and working efficiently in wet and dynamic environments. Using genetically engineered multi-domain proteins, a printed bi-layer proteinaceous hydrogel patch for heart failure treatments is reported. The intrinsic self-healing nature of hydrogel materials physically enables seamless interfacial integration of two disparate hydrogel layers and functionally endows the cardiac patches with the combinatorial advantages of each layer. Leveraging the biocompatibility, structural stability, and tunable drug release properties of the bi-layer hydrogel, promising effects of hemostasis, fibrosis reduction, and heart function recovery on mice is demonstrated with two myocardium damage models. Moreover, this proteinaceous patch is proved biodegradable in vivo without any additive inflammations. In conclusion, this work introduces a promising new type of minimally invasive patch based on genetically modified double-layer protein gel for treating heart-related injuries or diseases.


Asunto(s)
Hemostáticos , Infarto del Miocardio , Animales , Vendajes , Hidrogeles/química , Ratones , Infarto del Miocardio/tratamiento farmacológico , Miocardio
16.
J Org Chem ; 87(2): 1272-1284, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-34964642

RESUMEN

Inspired by Roush's pioneering work on rare sugars, we have developed a scalable, stereoselective, de novo synthesis of orthogonally protected C2-fluoro digitoxose and cymarose, utilizing Sharpless kinetic resolution and organocatalytic fluorination as key steps. The utility of this strategy is demonstrated by the synthesis of a fluorinated analogue of digoxin, which indicates the fluorine on the sugar ring may have a significant impact on biological activity.


Asunto(s)
Digoxina , Flúor , Halogenación , Hexosas , Estereoisomerismo
17.
Mater Today Bio ; 13: 100179, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34938993

RESUMEN

The precise fabrication of artificially designed molecular complexes into ordered structures resembling their natural counterparts would find broad applications but remains a major challenge in the field. Here we genetically design chitin-binding domain (CBD)-containing amyloid proteins, and rationally fabricate well-ordered CBD-containing functional amyloid-chitin complex structures by coupling a top-down manufacturing process with a bottom-up self-assembly. Our fabrication approach starts with the dissolution of both CBD-containing functional amyloid and chitin in hexafluoroisopropanol (HFIP) to make a hybrid ink. This hybrid ink platform, coupled with multiple fabrication methods including airbrushing, electrospinning and soft-lithography, produces a series of unique freestanding structures. The structural features of the products, such as the ability to direct the light path and mimicking of the extracellular matrix enable applications in functional light gratings and cell culture, respectively. Further genetic engineering of the protein component allowed tunable functionalization of these materials, including nanoparticle immobilization and protein conjugation, resulting in broad applications in electronic devices and enzyme immobilization. Our technological platform can drive new advances in biocatalysis, tissue engineering, biomedicine, photonics and electronics.

18.
Microb Pathog ; 159: 105145, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34411653

RESUMEN

Pasteurella multocida (P. multocida) is a Gram-negative bacterium which causes diseases in poultry, livestock, and humans, resulting in huge economic losses. P. multocida serovar A CQ6 (PmCQ6) is a naturally occurring attenuated strain with a thin capsule. Thus, we aimed to explore why this strain is less virulent and produces less capsule compared with P. multocida serovar A strain CQ2 (PmCQ2). Analysis of capsular polysaccharide synthesis genes in PmCQ6 revealed that, compared with PmCQ2, there was only a single point mutation in the initiation codon sequence of the hyaC gene. To test whether this point mutation caused capsular deficiency and reduced virulence, we rescued this hyaC mutation and observed a restoration of capsule production and higher virulence. Transcriptome analysis showed that the hyaC point mutation led to a downregulation of capsule synthesis and/or iron utilization related-genes. Taken together, the results indicate that the start codon mutation of hyaC is an important factor affecting the capsule synthesis and virulence of PmCQ6.


Asunto(s)
Infecciones por Pasteurella , Pasteurella multocida , Uridina Difosfato Glucosa Deshidrogenasa/genética , Humanos , Infecciones por Pasteurella/veterinaria , Pasteurella multocida/enzimología , Pasteurella multocida/genética , Mutación Puntual , Serogrupo , Virulencia/genética
19.
Cell Rep ; 34(5): 108697, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33535029

RESUMEN

Understanding cellular origins of cardiac adipocytes (CAs) can offer important implications for the treatment of fat-associated cardiovascular diseases. Here, we perform lineage tracing studies by using various genetic models and find that cardiac mesenchymal cells (MCs) contribute to CAs in postnatal development and adult homeostasis. Although PDGFRa+ and PDGFRb+ MCs both give rise to intramyocardial adipocytes, PDGFRb+ MCs are demonstrated to be the major source of intramyocardial adipocytes. Moreover, we find that PDGFRb+ cells are heterogenous, as PDGFRb is expressed not only in pericytes and smooth muscle cells (SMCs) but also in some subendocardial, pericapillary, or adventitial PDGFRa+ fibroblasts. Dual-recombinase-mediated intersectional genetic lineage tracing reveals that PDGFRa+PDGFRb+ double-positive periendothelial fibroblasts contribute to intramyocardial adipocytes. In contrast, SMCs and NG2+ pericytes do not contribute to CAs. These in vivo findings demonstrate that PDGFRb+ MCs, but not NG2+ coronary vascular mural cells, are the major source of intramyocardial adipocytes.


Asunto(s)
Células Madre Mesenquimatosas/metabolismo , Miocardio/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Animales , Humanos , Células Madre Mesenquimatosas/citología , Ratones , Miocardio/citología , Pericitos/citología , Pericitos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA