Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
3.
Nat Microbiol ; 6(3): 301-312, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33462433

RESUMEN

Bacteria from the same species can differ widely in their gene content. In Escherichia coli, the set of genes shared by all strains, known as the core genome, represents about half the number of genes present in any strain. Although recent advances in bacterial genomics have unravelled genes required for fitness in various experimental conditions, most studies have focused on single model strains. As a result, the impact of the species' genetic diversity on core processes of the bacterial cell remains largely under-investigated. Here, we have developed a CRISPR interference platform for high-throughput gene repression that is compatible with most E. coli isolates and closely related species. We have applied it to assess the importance of ~3,400 nearly ubiquitous genes in three growth conditions in 18 representative E. coli strains spanning most common phylogroups and lifestyles of the species. Our screens revealed extensive variations in gene essentiality between strains and conditions. Investigation of the genetic determinants for these variations highlighted the importance of epistatic interactions with mobile genetic elements. In particular, we have shown how prophage-encoded defence systems against phage infection can trigger the essentiality of persistent genes that are usually non-essential. This study provides broad insights into the evolvability of gene essentiality and argues for the importance of studying various isolates from the same species under diverse conditions.


Asunto(s)
Escherichia coli/genética , Genes Esenciales/genética , Variación Genética , Elementos Transponibles de ADN , Escherichia coli/clasificación , Escherichia coli/crecimiento & desarrollo , Expresión Génica , Aptitud Genética , Genoma Bacteriano , Filogenia , Especificidad de la Especie
4.
Nat Commun ; 8: 14737, 2017 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-28485369

RESUMEN

Gram-negative bacteria secrete proteins using a type III secretion system (T3SS), which functions as a needle-like molecular machine. The many proteins involved in T3SS construction are tightly regulated due to its role in pathogenesis and motility. Here, starting with the 35 kb Salmonella pathogenicity island 1 (SPI-1), we eliminated internal regulation and simplified the genetics by removing or recoding genes, scrambling gene order and replacing all non-coding DNA with synthetic genetic parts. This process results in a 16 kb cluster that shares no sequence identity, regulation or organizational principles with SPI-1. Building this simplified system led to the discovery of essential roles for an internal start site (SpaO) and small RNA (InvR). Further, it can be controlled using synthetic regulatory circuits, including under SPI-1 repressing conditions. This work reveals an incredible post-transcriptional robustness in T3SS assembly and aids its control as a tool in biotechnology.


Asunto(s)
Ingeniería Genética , Sistemas de Secreción Tipo III/genética , Regulación de la Expresión Génica , Familia de Multigenes , Operón , Salmonella enterica
5.
Nat Chem Biol ; 13(7): 706-708, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28530708

RESUMEN

Optogenetic tools use colored light to rapidly control gene expression in space and time. We designed a genetically encoded system that gives Escherichia coli the ability to distinguish between red, green, and blue (RGB) light and respond by changing gene expression. We use this system to produce 'color photographs' on bacterial culture plates by controlling pigment production and to redirect metabolic flux by expressing CRISPRi guide RNAs.


Asunto(s)
Escherichia coli/genética , Escherichia coli/efectos de la radiación , Regulación Bacteriana de la Expresión Génica/efectos de la radiación , Ingeniería Genética , Luz , Sistemas CRISPR-Cas/genética , Color , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Análisis de Flujos Metabólicos , Pigmentación/efectos de la radiación , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo
6.
Nucleic Acids Res ; 44(13): 6493-502, 2016 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-27298256

RESUMEN

Genetic engineering projects often require control over when a protein is degraded. To this end, we use a fusion between a degron and an inactivating peptide that can be added to the N-terminus of a protein. When the corresponding protease is expressed, it cleaves the peptide and the protein is degraded. Three protease:cleavage site pairs from Potyvirus are shown to be orthogonal and active in exposing degrons, releasing inhibitory domains and cleaving polyproteins. This toolbox is applied to the design of genetic circuits as a means to control regulator activity and degradation. First, we demonstrate that a gate can be constructed by constitutively expressing an inactivated repressor and having an input promoter drive the expression of the protease. It is also shown that the proteolytic release of an inhibitory domain can improve the dynamic range of a transcriptional gate (200-fold repression). Next, we design polyproteins containing multiple repressors and show that their cleavage can be used to control multiple outputs. Finally, we demonstrate that the dynamic range of an output can be improved (8-fold to 190-fold) with the addition of a protease-cleaved degron. Thus, controllable proteolysis offers a powerful tool for modulating and expanding the function of synthetic gene circuits.


Asunto(s)
Ingeniería Genética , Péptido Hidrolasas/genética , Procesamiento Proteico-Postraduccional/genética , Proteolisis , Redes Reguladoras de Genes/genética , Genes Sintéticos , Péptido Hidrolasas/metabolismo , Poliproteínas/genética , Potyvirus/enzimología , Potyvirus/genética
7.
ACS Synth Biol ; 4(12): 1361-72, 2015 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-26548807

RESUMEN

Genetic memory can be implemented using enzymes that catalyze DNA inversions, where each orientation corresponds to a "bit". Here, we use two DNA invertases (FimE and HbiF) that reorient DNA irreversibly between two states with opposite directionality. First, we construct memory that is set by FimE and reset by HbiF. Next, we build a NOT gate where the input promoter drives FimE and in the absence of signal the reverse state is maintained by the constitutive expression of HbiF. The gate requires ∼3 h to turn on and off. The evolutionary stabilities of these circuits are measured by passaging cells while cycling function. The memory switch is stable over 400 h (17 days, 14 state changes); however, the gate breaks after 54 h (>2 days) due to continuous invertase expression. Genome sequencing reveals that the circuit remains intact, but the host strain evolves to reduce invertase expression. This work highlights the need to evaluate the evolutionary robustness and failure modes of circuit designs, especially as more complex multigate circuits are implemented.


Asunto(s)
Computadores Moleculares , Proteínas de Unión al ADN/química , ADN/química , Proteínas de Escherichia coli/química , Recombinasas/química , Inversión de Secuencia , Lógica
8.
Nat Methods ; 11(12): 1261-6, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25344638

RESUMEN

Genetic memory enables the recording of information in the DNA of living cells. Memory can record a transient environmental signal or cell state that is then recalled at a later time. Permanent memory is implemented using irreversible recombinases that invert the orientation of a unit of DNA, corresponding to the [0,1] state of a bit. To expand the memory capacity, we have applied bioinformatics to identify 34 phage integrases (and their cognate attB and attP recognition sites), from which we build 11 memory switches that are perfectly orthogonal to each other and the FimE and HbiF bacterial invertases. Using these switches, a memory array is constructed in Escherichia coli that can record 1.375 bytes of information. It is demonstrated that the recombinases can be layered and used to permanently record the transient state of a transcriptional logic gate.


Asunto(s)
Bacteriófagos/genética , ADN Bacteriano/genética , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Integrasas/genética , Memoria/fisiología , Recombinasas/genética , Bacteriófagos/enzimología , Biología Computacional , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Recombinasas/metabolismo , Recombinación Genética
9.
Protein Sci ; 21(4): 511-9, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22362668

RESUMEN

A synthetic de novo designed heterodimeric coiled-coil was used to copurify two target fluorescent proteins, Venus and enhanced cyan fluorescent protein (ECFP). The coiled-coil consists of two 21-amino acid repetitive sequences, (EIAALEK)(3) and (KIAALKE)(3), named E3 and K3, respectively. These sequences were fused to the C-termini of ECFP or Venus followed by either a strep- or a his-tag, respectively, for affinity purification. Mixed lysates of Venus-K3 and ECFP-E3 were subjected to consecutive affinity purification and showed highly specific association between the coiled-coil pair by SDS-PAGE, gel filtration, isothermal titration calorimetry (ITC), and fluorescence resonance energy transfer (FRET). The tagged proteins eluted as heterodimers at the concentrations tested. FRET analysis further showed that the coiled-coil pair was stable in buffers commonly used for protein purification, including those containing high salt concentration and detergent. This study shows that the E3/K3 pair is very well suited for the copurification of two target proteins expressed in vivo because of its high specificity: it forms exclusively heterodimers in solution, it does not interact with any cellular proteins and it is stable under different buffer conditions.


Asunto(s)
Proteínas Fluorescentes Verdes/aislamiento & purificación , Multimerización de Proteína , Proteínas Recombinantes de Fusión/aislamiento & purificación , Marcadores de Afinidad/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Tampones (Química) , Calorimetría/métodos , Cromatografía de Afinidad , Clonación Molecular , Electroforesis en Gel de Poliacrilamida , Escherichia coli/química , Transferencia Resonante de Energía de Fluorescencia , Proteínas Fluorescentes Verdes/química , Datos de Secuencia Molecular , Plásmidos/química , Desnaturalización Proteica , Mapeo de Interacción de Proteínas , Estabilidad Proteica , Proteínas Recombinantes de Fusión/química , Secuencias Repetitivas de Aminoácido , Sales (Química)/química , Soluciones/química , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA