Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Nat Cardiovasc Res ; 3(9): 1035-1048, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39232138

RESUMEN

Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of mortality worldwide. Laminar shear stress from blood flow, sensed by vascular endothelial cells, protects from ASCVD by upregulating the transcription factors KLF2 and KLF4, which induces an anti-inflammatory program that promotes vascular resilience. Here we identify clustered γ-protocadherins as therapeutically targetable, potent KLF2 and KLF4 suppressors whose upregulation contributes to ASCVD. Mechanistic studies show that γ-protocadherin cleavage results in translocation of the conserved intracellular domain to the nucleus where it physically associates with and suppresses signaling by the Notch intracellular domain. γ-Protocadherins are elevated in human ASCVD endothelium; their genetic deletion or antibody blockade protects from ASCVD in mice without detectably compromising host defense against bacterial or viral infection. These results elucidate a fundamental mechanism of vascular inflammation and reveal a method to target the endothelium rather than the immune system as a protective strategy in ASCVD.


Asunto(s)
Aterosclerosis , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel , Aterosclerosis/metabolismo , Aterosclerosis/genética , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Animales , Humanos , Modelos Animales de Enfermedad , Transducción de Señal , Cadherinas/metabolismo , Cadherinas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Endoteliales/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Masculino , Receptores Notch/metabolismo , Receptores Notch/genética , Proteínas Relacionadas con las Cadherinas , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/genética , Placa Aterosclerótica/patología
2.
JCI Insight ; 9(19)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39190492

RESUMEN

The complexity of the mechanisms underlying metabolic dysfunction-associated steatotic liver disease (MASLD) progression remains a significant challenge for the development of effective therapeutics. miRNAs have shown great promise as regulators of biological processes and as therapeutic targets for complex diseases. Here, we study the role of hepatic miR-33, an important regulator of lipid metabolism, during the progression of MASLD and the development of hepatocellular carcinoma (HCC). We report that miR-33 was elevated in the livers of humans and mice with MASLD and that its deletion in hepatocytes (miR-33 HKO) improved multiple aspects of the disease, including steatosis and inflammation, limiting the progression to metabolic dysfunction-associated steatotic hepatitis (MASH), fibrosis, and HCC. Mechanistically, hepatic miR-33 deletion reduced lipid synthesis and promoted mitochondrial fatty acid oxidation, reducing lipid burden. Additionally, absence of miR-33 altered the expression of several known miR-33 target genes involved in metabolism and resulted in improved mitochondrial function and reduced oxidative stress. The reduction in lipid accumulation and liver injury resulted in decreased YAP/TAZ pathway activation, which may be involved in the reduced HCC progression in HKO livers. Together, these results suggest suppressing hepatic miR-33 may be an effective therapeutic approach to temper the development of MASLD, MASH, and HCC in obesity.


Asunto(s)
Carcinoma Hepatocelular , Progresión de la Enfermedad , Hepatocitos , Neoplasias Hepáticas , MicroARNs , MicroARNs/genética , MicroARNs/metabolismo , Animales , Ratones , Hepatocitos/metabolismo , Hepatocitos/patología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Metabolismo de los Lípidos/genética , Masculino , Hígado Graso/genética , Hígado Graso/metabolismo , Hígado Graso/patología , Ratones Noqueados , Modelos Animales de Enfermedad , Hígado/metabolismo , Hígado/patología
3.
Nat Metab ; 6(4): 741-763, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38664583

RESUMEN

Due to the rise in overnutrition, the incidence of obesity-induced hepatocellular carcinoma (HCC) will continue to escalate; however, our understanding of the obesity to HCC developmental axis is limited. We constructed a single-cell atlas to interrogate the dynamic transcriptomic changes during hepatocarcinogenesis in mice. Here we identify fatty acid binding protein 5 (FABP5) as a driver of obesity-induced HCC. Analysis of transformed cells reveals that FABP5 inhibition and silencing predispose cancer cells to lipid peroxidation and ferroptosis-induced cell death. Pharmacological inhibition and genetic ablation of FABP5 ameliorates the HCC burden in male mice, corresponding to enhanced ferroptosis in the tumour. Moreover, FABP5 inhibition induces a pro-inflammatory tumour microenvironment characterized by tumour-associated macrophages with increased expression of the co-stimulatory molecules CD80 and CD86 and increased CD8+ T cell activation. Our work unravels the dual functional role of FABP5 in diet-induced HCC, inducing the transformation of hepatocytes and an immunosuppressive phenotype of tumour-associated macrophages and illustrates FABP5 inhibition as a potential therapeutic approach.


Asunto(s)
Carcinoma Hepatocelular , Proteínas de Unión a Ácidos Grasos , Ferroptosis , Neoplasias Hepáticas , Proteínas de Neoplasias , Obesidad , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/etiología , Animales , Proteínas de Unión a Ácidos Grasos/metabolismo , Proteínas de Unión a Ácidos Grasos/genética , Ratones , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/etiología , Obesidad/complicaciones , Obesidad/metabolismo , Masculino , Microambiente Tumoral/inmunología , Humanos , Ratones Endogámicos C57BL , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/inmunología
4.
Nat Commun ; 15(1): 2131, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459068

RESUMEN

AgRP neurons drive hunger, and excessive nutrient intake is the primary driver of obesity and associated metabolic disorders. While many factors impacting central regulation of feeding behavior have been established, the role of microRNAs in this process is poorly understood. Utilizing unique mouse models, we demonstrate that miR-33 plays a critical role in the regulation of AgRP neurons, and that loss of miR-33 leads to increased feeding, obesity, and metabolic dysfunction in mice. These effects include the regulation of multiple miR-33 target genes involved in mitochondrial biogenesis and fatty acid metabolism. Our findings elucidate a key regulatory pathway regulated by a non-coding RNA that impacts hunger by controlling multiple bioenergetic processes associated with the activation of AgRP neurons, providing alternative therapeutic approaches to modulate feeding behavior and associated metabolic diseases.


Asunto(s)
Hambre , MicroARNs , Animales , Ratones , Proteína Relacionada con Agouti/genética , Proteína Relacionada con Agouti/metabolismo , Hambre/fisiología , Hipotálamo/metabolismo , MicroARNs/metabolismo , Neuronas/metabolismo , Obesidad/metabolismo
5.
bioRxiv ; 2024 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-38293157

RESUMEN

Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of mortality worldwide1. Laminar shear stress (LSS) from blood flow in straight regions of arteries protects against ASCVD by upregulating the Klf2/4 anti-inflammatory program in endothelial cells (ECs)2-8. Conversely, disturbed shear stress (DSS) at curves or branches predisposes these regions to plaque formation9,10. We previously reported a whole genome CRISPR knockout screen11 that identified novel inducers of Klf2/4. Here we report suppressors of Klf2/4 and characterize one candidate, protocadherin gamma A9 (Pcdhga9), a member of the clustered protocadherin gene family12. Pcdhg deletion increases Klf2/4 levels in vitro and in vivo and suppresses inflammatory activation of ECs. Pcdhg suppresses Klf2/4 by inhibiting the Notch pathway via physical interaction of cleaved Notch1 intracellular domain (NICD Val1744) with nuclear Pcdhg C-terminal constant domain (CCD). Pcdhg inhibition by EC knockout (KO) or blocking antibody protects from atherosclerosis. Pcdhg is elevated in the arteries of human atherosclerosis. This study identifies a novel fundamental mechanism of EC resilience and therapeutic target for treating inflammatory vascular disease.

6.
bioRxiv ; 2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38187697

RESUMEN

Desmosterol and cholesterol are essential lipid components of the sperm plasma membrane. Cholesterol efflux is required for capacitation, a process through which sperm acquire fertilizing ability. In this study, using a transgenic mouse model overexpressing 24-dehydrocholesterol reductase (DHCR24), an enzyme in the sterol biosynthesis pathway responsible for the conversion of desmosterol to cholesterol, we show that disruption of sterol homeostasis during spermatogenesis led to defective sperm morphology characterized by incomplete mitochondrial packing in the midpiece, reduced sperm count and motility, and a decline in male fertility with increasing paternal age, without changes in body fat composition. Sperm depleted of desmosterol exhibit inefficiency in the acrosome reaction, metabolic dysfunction, and an inability to fertilize the egg. These findings provide molecular insights into sterol homeostasis for sperm capacitation and its impact on male fertility.

7.
bioRxiv ; 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36711578

RESUMEN

The complexity of the multiple mechanisms underlying non-alcoholic fatty liver disease (NAFLD) progression remains a significant challenge for the development of effective therapeutics. miRNAs have shown great promise as regulators of biological processes and as therapeutic targets for complex diseases. Here, we study the role of hepatic miR-33, an important regulator of lipid metabolism, during the progression of NAFLD. We report that miR-33 is overexpressed in hepatocytes isolated from mice with NAFLD and demonstrate that its specific suppression in hepatocytes (miR-33 HKO ) improves multiple aspects of the disease, including insulin resistance, steatosis, and inflammation and limits the progression to non-alcoholic steatohepatitis (NASH), fibrosis and hepatocellular carcinoma (HCC). Mechanistically, we find that hepatic miR-33 deficiency reduces lipid biosynthesis and promotes mitochondrial fatty acid oxidation to reduce lipid burden in hepatocytes. Additionally, miR-33 deficiency improves mitochondrial function, reducing oxidative stress. In miR-33 deficient hepatocytes, we found an increase in AMPKα activation, which regulates several pathways resulting in the attenuation of liver disease. The reduction in lipid accumulation and liver injury resulted in decreased transcriptional activity of the YAP/TAZ pathway, which may be involved in the reduced progression to HCC in the HKO livers. Together, these results suggest suppressing hepatic miR-33 may be an effective therapeutic approach at different stages of NAFLD/NASH/HCC disease progression.

8.
Diabetes ; 71(9): 2020-2033, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35771994

RESUMEN

Vascular complications are a major cause of illness and death in patients with type 1 diabetes (T1D). Diabetic vascular basement membranes are enriched in fibronectin (FN), an extracellular matrix protein that amplifies inflammatory signaling in endothelial cells through its main receptor, integrin α5ß1. Binding of the integrin α5 cytoplasmic domain to phosphodiesterase 4D5 (PDE4D5), which increases phosphodiesterase catalytic activity and inhibits antiinflammatory cAMP signaling, was found to mediate these effects. Here, we examined mice in which the integrin α5 cytoplasmic domain is replaced by that of α2 (integrin α5/2) or the integrin α5 binding site in PDE4D is mutated (PDE4Dmut). T1D was induced via injection of streptozotocin and hyperlipidemia induced via injection of PCSK9 virus and provision of a high-fat diet. We found that in T1D and hyperlipidemia, the integrin α5/2 mutation reduced atherosclerosis plaque size by ∼50%, with reduced inflammatory cell invasion and metalloproteinase expression. Integrin α5/2 T1D mice also had improved blood-flow recovery from hindlimb ischemia and improved biomechanical properties of the carotid artery. By contrast, the PDE4Dmut had no beneficial effects in T1D. FN signaling through integrin α5 is thus a major contributor to diabetic vascular disease but not through its interaction with PDE4D.


Asunto(s)
Diabetes Mellitus Tipo 1 , Fibronectinas , Integrina alfa5 , Animales , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/metabolismo , Células Endoteliales/metabolismo , Fibronectinas/metabolismo , Integrina alfa5/metabolismo , Ratones , Transducción de Señal
9.
Antioxidants (Basel) ; 11(5)2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35624761

RESUMEN

Drug-induced liver injury (DILI) development is commonly associated with acetaminophen (APAP) overdose, where glutathione scavenging leads to mitochondrial dysfunction and hepatocyte death. DILI is a severe disorder without effective late-stage treatment, since N-acetyl cysteine must be administered 8 h after overdose to be efficient. Ammonia homeostasis is altered during liver diseases and, during DILI, it is accompanied by decreased glycine N-methyltransferase (GNMT) expression and S-adenosylmethionine (AdoMet) levels that suggest a reduced methionine cycle. Anti-miR-873-5p treatment prevents cell death in primary hepatocytes and the appearance of necrotic areas in liver from APAP-administered mice. In our study, we demonstrate a GNMT and methionine cycle activity restoration by the anti-miR-873-5p that reduces mitochondrial dysfunction and oxidative stress. The lack of hyperammoniemia caused by the therapy results in a decreased urea cycle, enhancing the synthesis of polyamines from ornithine and AdoMet and thus impacting the observed recovery of mitochondria and hepatocyte proliferation for regeneration. In summary, anti-miR-873-5p appears to be an effective therapy against APAP-induced liver injury, where the restoration of GNMT and the methionine cycle may prevent mitochondrial dysfunction while activating hepatocyte proliferative response.

10.
Sci Adv ; 7(50): eabj2814, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34890239

RESUMEN

Hypothalamic astrocytes play pivotal roles in both nutrient sensing and the modulation of synaptic plasticity of hypothalamic neuronal circuits in control of feeding and systemic glucose and energy metabolism. Here, we show the relevance of astrocytic fatty acid (FA) homeostasis under the opposing control of angiopoietin-like 4 (ANGPTL-4) and peroxisome proliferator­activated receptor gamma (PPARγ) in the cellular adaptations of hypothalamic astrocytes and neurons to the changing metabolic milieu. We observed that increased availability of FA in astrocytes induced by cell- and time-selective knockdown of Angptl4 protected against diet-induced obesity, while cell- and time-selective knockdown of Angptl4-regulated Pparγ lead to elevated susceptibility to obesity. Overall, our results unravel a previously unidentified role for astrocytic FA metabolism in central control of body weight and glucose homeostasis.

11.
Curr Atheroscler Rep ; 23(7): 33, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33970351

RESUMEN

PURPOSE OF REVIEW: Non-coding RNAs (ncRNAs) including microRNAs (miRNAs) and circular RNAs (circRNAs) are pivotal regulators of mRNA and protein expression that critically contribute to cardiovascular pathophysiology. Although little is known about the origin and function of such ncRNAs, they have been suggested as promising biomarkers with powerful therapeutic value in cardiovascular disease (CVD). In this review, we summarize the most recent findings on ncRNAs biology and their implication on cholesterol homeostasis and lipoprotein metabolism that highlight novel therapeutic avenues for treating dyslipidemia and atherosclerosis. RECENT FINDINGS: Clinical and experimental studies have elucidated the underlying effects that specific miRNAs impose both directly and indirectly regulating circulating high-density lipoprotein (HDL), low-density lipoprotein (LDL), and very low-density lipoprotein (VLDL) metabolism and cardiovascular risk. Some of these relevant miRNAs include miR-148a, miR-128-1, miR-483, miR-520d, miR-224, miR-30c, miR-122, miR-33, miR-144, and miR-34. circRNAs are known to participate in a variety of physiological and pathological processes due to their abundance in tissues and their stage-specific expression activation. Recent studies have proven that circRNAs may be considered targets of CVD as well. Some of these cirRNAs are circ-0092317, circ_0003546, circ_0028198, and cirFASN that have been suggested to be strongly involved in lipoprotein metabolism; however, their relevance in CVD is still unknown. MicroRNA and cirRNAs have been proposed as powerful therapeutic targets for treating cardiometabolic disorders including atherosclerosis. Here, we discuss the recent findings in the field of lipid and lipoprotein metabolism underscoring the novel mechanisms by which some of these ncRNAs influence lipoprotein metabolism and CVD.


Asunto(s)
Aterosclerosis , MicroARNs , Aterosclerosis/genética , Humanos , Metabolismo de los Lípidos/genética , Lipoproteínas HDL , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular
12.
JHEP Rep ; 3(3): 100276, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33997750

RESUMEN

BACKGROUND & AIMS: Mitochondria are the major organelles for the formation of reactive oxygen species (ROS) in the cell, and mitochondrial dysfunction has been described as a key factor in the pathogenesis of cholestatic liver disease. The methylation-controlled J-protein (MCJ) is a mitochondrial protein that interacts with and represses the function of complex I of the electron transport chain. The relevance of MCJ in the pathology of cholestasis has not yet been explored. METHODS: We studied the relationship between MCJ and cholestasis-induced liver injury in liver biopsies from patients with chronic cholestatic liver diseases, and in livers and primary hepatocytes obtained from WT and MCJ-KO mice. Bile duct ligation (BDL) was used as an animal model of cholestasis, and primary hepatocytes were treated with toxic doses of bile acids. We evaluated the effect of MCJ silencing for the treatment of cholestasis-induced liver injury. RESULTS: Elevated levels of MCJ were detected in the liver tissue of patients with chronic cholestatic liver disease when compared with normal liver tissue. Likewise, in mouse models, the hepatic levels of MCJ were increased. After BDL, MCJ-KO animals showed significantly decreased inflammation and apoptosis. In an in vitro model of bile-acid induced toxicity, we observed that the loss of MCJ protected mouse primary hepatocytes from bile acid-induced mitochondrial ROS overproduction and ATP depletion, enabling higher cell viability. Finally, the in vivo inhibition of the MCJ expression, following BDL, showed reduced liver injury and a mitigation of the main cholestatic characteristics. CONCLUSIONS: We demonstrated that MCJ is involved in the progression of cholestatic liver injury, and our results identified MCJ as a potential therapeutic target to mitigate the liver injury caused by cholestasis. LAY SUMMARY: In this study, we examine the effect of mitochondrial respiratory chain inhibition by MCJ on bile acid-induced liver toxicity. The loss of MCJ protects hepatocytes against apoptosis, mitochondrial ROS overproduction, and ATP depletion as a result of bile acid toxicity. Our results identify MCJ as a potential therapeutic target to mitigate liver injury in cholestatic liver diseases.

13.
Cell Death Dis ; 12(6): 555, 2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-34050139

RESUMEN

Dysregulation of miRNAs is a hallmark of cancer, modulating oncogenes, tumor suppressors, and drug responsiveness. The multi-kinase inhibitor sorafenib is one of the first-line drugs for advanced hepatocellular carcinoma (HCC), although the outcome for treated patients is heterogeneous. The identification of predictive biomarkers and targets of sorafenib efficacy are sorely needed. Thus, selected top upregulated miRNAs from the C19MC cluster were analyzed in different hepatoma cell lines compared to immortalized liver human cells, THLE-2 as control. MiR-518d-5p showed the most consistent upregulation among them. Thus, miR-518d-5p was measured in liver tumor/non-tumor samples of two distinct cohorts of HCC patients (n = 16 and n = 20, respectively). Circulating miR-518d-5p was measured in an independent cohort of HCC patients receiving sorafenib treatment (n = 100), where miR-518d-5p was analyzed in relation to treatment duration and patient's overall survival. In vitro and in vivo studies were performed in human hepatoma BCLC3 and Huh7 cells to analyze the effect of miR-518d-5p inhibition/overexpression during the response to sorafenib. Compared with healthy individuals, miR-518d-5p levels were higher in hepatic and serum samples from HCC patients (n = 16) and in an additional cohort of tumor/non-tumor paired samples (n = 20). MiR-518d-5p, through the inhibition of c-Jun and its mitochondrial target PUMA, desensitized human hepatoma cells and mouse xenograft to sorafenib-induced apoptosis. Finally, serum miR-518d-5p was assessed in 100 patients with HCC of different etiologies and BCLC-stage treated with sorafenib. In BCLC-C patients, higher serum miR-518d-5p at diagnosis was associated with shorter sorafenib treatment duration and survival. Hence, hepatic miR-518d-5p modulates sorafenib resistance in HCC through inhibition of c-Jun/PUMA-induced apoptosis. Circulating miR-518d-5p emerges as a potential lack of response biomarker to sorafenib in BCLC-C HCC patients.


Asunto(s)
Neoplasias Hepáticas/genética , MicroARNs/antagonistas & inhibidores , Mitocondrias/metabolismo , Animales , Apoptosis , Muerte Celular , Femenino , Humanos , Neoplasias Hepáticas/patología , Ratones , Ratones Desnudos
14.
J Hepatol ; 75(1): 34-45, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33571553

RESUMEN

BACKGROUND & AIMS: Perturbations of intracellular magnesium (Mg2+) homeostasis have implications for cell physiology. The cyclin M family, CNNM, perform key functions in the transport of Mg2+ across cell membranes. Herein, we aimed to elucidate the role of CNNM4 in the development of non-alcoholic steatohepatitis (NASH). METHODS: Serum Mg2+ levels and hepatic CNNM4 expression were characterised in clinical samples. Primary hepatocytes were cultured under methionine and choline deprivation. A 0.1% methionine and choline-deficient diet, or a choline-deficient high-fat diet were used to induce NASH in our in vivo rodent models. Cnnm4 was silenced using siRNA, in vitro with DharmaFECT and in vivo with Invivofectamine® or conjugated to N-acetylgalactosamine. RESULTS: Patients with NASH showed hepatic CNNM4 overexpression and dysregulated Mg2+ levels in the serum. Cnnm4 silencing ameliorated hepatic lipid accumulation, inflammation and fibrosis in the rodent NASH models. Mechanistically, CNNM4 knockdown in hepatocytes induced cellular Mg2+ accumulation, reduced endoplasmic reticulum stress, and increased microsomal triglyceride transfer activity, which promoted hepatic lipid clearance by increasing the secretion of VLDLs. CONCLUSIONS: CNNM4 is overexpressed in patients with NASH and is responsible for dysregulated Mg2+ transport. Hepatic CNNM4 is a promising therapeutic target for the treatment of NASH. LAY SUMMARY: Cyclin M4 (CNNM4) is overexpressed in non-alcoholic steatohepatitis (NASH) and promotes the export of magnesium from the liver. The liver-specific silencing of Cnnm4 ameliorates NASH by reducing endoplasmic reticulum stress and promoting the activity of microsomal triglyceride transfer protein.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Transporte de Catión/metabolismo , Hepatocitos/metabolismo , Magnesio , Enfermedad del Hígado Graso no Alcohólico , Animales , Transporte Biológico/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Descubrimiento de Drogas , Estrés del Retículo Endoplásmico/efectos de los fármacos , Regulación de la Expresión Génica , Humanos , Magnesio/sangre , Magnesio/metabolismo , Ratones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología
15.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33495342

RESUMEN

miR-33 is an intronic microRNA within the gene encoding the SREBP2 transcription factor. Like its host gene, miR-33 has been shown to be an important regulator of lipid metabolism. Inhibition of miR-33 has been shown to promote cholesterol efflux in macrophages by targeting the cholesterol transporter ABCA1, thus reducing atherosclerotic plaque burden. Inhibition of miR-33 has also been shown to improve high-density lipoprotein (HDL) biogenesis in the liver and increase circulating HDL-C levels in both rodents and nonhuman primates. However, evaluating the extent to which these changes in HDL metabolism contribute to atherogenesis has been hindered by the obesity and metabolic dysfunction observed in whole-body miR-33-knockout mice. To determine the impact of hepatic miR-33 deficiency on obesity, metabolic function, and atherosclerosis, we have generated a conditional knockout mouse model that lacks miR-33 only in the liver. Characterization of this model demonstrates that loss of miR-33 in the liver does not lead to increased body weight or adiposity. Hepatic miR-33 deficiency actually improves regulation of glucose homeostasis and impedes the development of fibrosis and inflammation. We further demonstrate that hepatic miR-33 deficiency increases circulating HDL-C levels and reverse cholesterol transport capacity in mice fed a chow diet, but these changes are not sufficient to reduce atherosclerotic plaque size under hyperlipidemic conditions. By elucidating the role of miR-33 in the liver and the impact of hepatic miR-33 deficiency on obesity and atherosclerosis, this work will help inform ongoing efforts to develop novel targeted therapies against cardiometabolic diseases.


Asunto(s)
Aterosclerosis/genética , Aterosclerosis/fisiopatología , Peso Corporal , Homeostasis , Hígado/metabolismo , Hígado/fisiopatología , MicroARNs/metabolismo , Animales , Aterosclerosis/sangre , Transporte Biológico , Tetracloruro de Carbono , Colesterol/metabolismo , Dieta Alta en Grasa , Conducta Alimentaria , Regulación de la Expresión Génica , Lipoproteínas HDL/sangre , Ratones , MicroARNs/genética , Obesidad/genética , Placa Aterosclerótica/genética , Placa Aterosclerótica/fisiopatología
16.
Nat Commun ; 11(1): 3360, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32620763

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is considered the next major health epidemic with an estimated 25% worldwide prevalence. No drugs have yet been approved and NAFLD remains a major unmet need. Here, we identify MCJ (Methylation-Controlled J protein) as a target for non-alcoholic steatohepatitis (NASH), an advanced phase of NAFLD. MCJ is an endogenous negative regulator of the respiratory chain Complex I that acts to restrain mitochondrial respiration. We show that therapeutic targeting of MCJ in the liver with nanoparticle- and GalNAc-formulated siRNA efficiently reduces liver lipid accumulation and fibrosis in multiple NASH mouse models. Decreasing MCJ expression enhances the capacity of hepatocytes to mediate ß-oxidation of fatty acids and minimizes lipid accumulation, which results in reduced hepatocyte damage and fibrosis. Moreover, MCJ levels in the liver of NAFLD patients are elevated relative to healthy subjects. Thus, inhibition of MCJ emerges as an alternative approach to treat NAFLD.


Asunto(s)
Ácidos Grasos/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo , Hígado/patología , Mitocondrias/efectos de los fármacos , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Adulto , Anciano , Animales , Conjuntos de Datos como Asunto , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Femenino , Proteínas del Choque Térmico HSP40/antagonistas & inhibidores , Proteínas del Choque Térmico HSP40/genética , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Hígado/citología , Hígado/efectos de los fármacos , Masculino , Persona de Mediana Edad , Mitocondrias/metabolismo , Proteínas Mitocondriales/antagonistas & inhibidores , Proteínas Mitocondriales/genética , Chaperonas Moleculares/antagonistas & inhibidores , Chaperonas Moleculares/genética , Nanopartículas/administración & dosificación , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/patología , Oxidación-Reducción/efectos de los fármacos , Cultivo Primario de Células , ARN Interferente Pequeño/administración & dosificación , RNA-Seq
17.
Cell Metab ; 31(3): 605-622.e10, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32084378

RESUMEN

Non-alcoholic steatohepatitis (NASH) is characterized by the accumulation of hepatic fat in an inflammatory/fibrotic background. Herein, we show that the hepatic high-activity glutaminase 1 isoform (GLS1) is overexpressed in NASH. Importantly, GLS1 inhibition reduces lipid content in choline and/or methionine deprivation-induced steatotic mouse primary hepatocytes, in human hepatocyte cell lines, and in NASH mouse livers. We suggest that under these circumstances, defective glutamine fueling of anaplerotic mitochondrial metabolism and concomitant reduction of oxidative stress promotes a reprogramming of serine metabolism, wherein serine is shifted from the generation of the antioxidant glutathione and channeled to provide one-carbon units to regenerate the methionine cycle. The restored methionine cycle can induce phosphatidylcholine synthesis from the phosphatidylethanolamine N-methyltransferase-mediated and CDP-choline pathways as well as by base-exchange reactions between phospholipids, thereby restoring hepatic phosphatidylcholine content and very-low-density lipoprotein export. Overall, we provide evidence that hepatic GLS1 targeting is a valuable therapeutic approach in NASH.


Asunto(s)
Glutaminasa/metabolismo , Lipoproteínas VLDL/metabolismo , Hígado/enzimología , Enfermedad del Hígado Graso no Alcohólico/patología , Triglicéridos/metabolismo , Adulto , Animales , Colina , Modelos Animales de Enfermedad , Femenino , Hepatocitos/metabolismo , Humanos , Metabolismo de los Lípidos , Masculino , Metionina , Ratones Endogámicos C57BL , Estrés Oxidativo , Fosfolípidos/metabolismo
18.
Mol Metab ; 29: 40-54, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31668391

RESUMEN

OBJECTIVE: Non-alcoholic fatty liver disease (NAFLD) is a complex pathology in which several dysfunctions, including alterations in metabolic pathways, mitochondrial functionality and unbalanced lipid import/export, lead to lipid accumulation and progression to inflammation and fibrosis. The enzyme glycine N-methyltransferase (GNMT), the most important enzyme implicated in S-adenosylmethionine catabolism in the liver, is downregulated during NAFLD progression. We have studied the mechanism involved in GNMT downregulation by its repressor microRNA miR-873-5p and the metabolic pathways affected in NAFLD as well as the benefit of recovery GNMT expression. METHODS: miR-873-5p and GNMT expression were evaluated in liver biopsies of NAFLD/NASH patients. Different in vitro and in vivo NAFLD murine models were used to assess miR-873-5p/GNMT involvement in fatty liver progression through targeting of the miR-873-5p as NAFLD therapy. RESULTS: We describe a new function of GNMT as an essential regulator of Complex II activity in the electron transport chain in the mitochondria. In NAFLD, GNMT expression is controlled by miR-873-5p in the hepatocytes, leading to disruptions in mitochondrial functionality in a preclinical murine non-alcoholic steatohepatitis (NASH) model. Upregulation of miR-873-5p is shown in the liver of NAFLD/NASH patients, correlating with hepatic GNMT depletion. Importantly, NASH therapies based on anti-miR-873-5p resolve lipid accumulation, inflammation and fibrosis by enhancing fatty acid ß-oxidation in the mitochondria. Therefore, miR-873-5p inhibitor emerges as a potential tool for NASH treatment. CONCLUSION: GNMT participates in the regulation of metabolic pathways and mitochondrial functionality through the regulation of Complex II activity in the electron transport chain. In NAFLD, GNMT is repressed by miR-873-5p and its targeting arises as a valuable therapeutic option for treatment.


Asunto(s)
Complejo II de Transporte de Electrones/metabolismo , Glicina N-Metiltransferasa/metabolismo , MicroARNs/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Adulto , Animales , Antagomirs/metabolismo , Antagomirs/uso terapéutico , Modelos Animales de Enfermedad , Complejo II de Transporte de Electrones/genética , Femenino , Glicina N-Metiltransferasa/deficiencia , Glicina N-Metiltransferasa/genética , Hepatocitos/citología , Hepatocitos/metabolismo , Humanos , Peroxidación de Lípido , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , Persona de Mediana Edad , Mitocondrias/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Regulación hacia Arriba
19.
EBioMedicine ; 40: 406-421, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30594553

RESUMEN

BACKGROUND: Even though liver kinase B1 (LKB1) is usually described as a tumor suppressor in a wide variety of tissues, it has been shown that LKB1 aberrant expression is associated with bad prognosis in Hepatocellular Carcinoma (HCC). METHODS: Herein we have overexpressed LKB1 in human hepatoma cells and by using histidine pull-down assay we have investigated the role of the hypoxia-related post-translational modification of Small Ubiquitin-related Modifier (SUMO)ylation in the regulation of LKB1 oncogenic role. Molecular modelling between LKB1 and its interactors, involved in regulation of LKB1 nucleocytoplasmic shuttling and LKB1 activity, was performed. Finally, high affinity SUMO binding entities-based technology were used to validate our findings in a pre-clinical mouse model and in clinical HCC. FINDINGS: We found that in human hepatoma cells under hypoxic stress, LKB1 overexpression increases cell viability and aggressiveness in association with changes in LKB1 cellular localization. Moreover, by using site-directed mutagenesis, we have shown that LKB1 is SUMOylated by SUMO-2 at Lys178 hampering LKB1 nucleocytoplasmic shuttling and fueling hepatoma cell growth. Molecular modelling of SUMO modified LKB1 further confirmed steric impedance between SUMOylated LKB1 and the STe20-Related ADaptor cofactor (STRADα), involved in LKB1 export from the nucleus. Finally, we provide evidence that endogenous LKB1 is modified by SUMO in pre-clinical mouse models of HCC and clinical HCC, where LKB1 SUMOylation is higher in fast growing tumors. INTERPRETATION: Overall, SUMO-2 modification of LKB1 at Lys178 mediates LKB1 cellular localization and its oncogenic role in liver cancer. FUND: This work was supported by grants from NIH (US Department of Health and Human services)-R01AR001576-11A1 (J.M.M and M.L.M-C.), Gobierno Vasco-Departamento de Salud 2013111114 (to M.L.M.-C), ELKARTEK 2016, Departamento de Industria del Gobierno Vasco (to M.L.M.-C), MINECO: SAF2017-87301-R and SAF2014-52097-R integrado en el Plan Estatal de Investigación Cientifica y Técnica y Innovación 2013-2016 cofinanciado con Fondos FEDER (to M.L.M.-C and J.M.M., respectively), BFU2015-71017/BMC MINECO/FEDER, EU (to A.D.Q. and I.D.M.), BIOEF (Basque Foundation for Innovation and Health Research): EITB Maratoia BIO15/CA/014; Instituto de Salud Carlos III:PIE14/00031, integrado en el Plan Estatal de Investigación Cientifica y Técnica y Innovacion 2013-2016 cofinanciado con Fondos FEDER (to M.L.M.-C and J.M.M), Asociación Española contra el Cáncer (T.C.D, P·F-T and M.L.M-C), Daniel Alagille award from EASL (to T.C.D), Fundación Científica de la Asociación Española Contra el Cancer (AECC Scientific Foundation) Rare Tumor Calls 2017 (to M.L.M and M.A), La Caixa Foundation Program (to M.L.M), Programma di Ricerca Regione-Università 2007-2009 and 2011-2012, Regione Emilia-Romagna (to E.V.), Ramón Areces Foundation and the Andalusian Government (BIO-198) (A.D.Q. and I.D.M.), ayudas para apoyar grupos de investigación del sistema Universitario Vasco IT971-16 (P.A.), MINECO:SAF2015-64352-R (P.A.), Institut National du Cancer, FRANCE, INCa grant PLBIO16-251 (M.S.R.), MINECO - BFU2016-76872-R to (E.B.). Work produced with the support of a 2017 Leonardo Grant for Researchers and Cultural Creators, BBVA Foundation (M.V-R). Finally, Ciberehd_ISCIII_MINECO is funded by the Instituto de Salud Carlos III. We thank MINECO for the Severo Ochoa Excellence Accreditation to CIC bioGUNE (SEV-2016-0644). Funding sources had no involvement in study design; in the collection, analysis, and interpretation of data; in the writing of the report; and in the decision to submit the paper for publication.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas Oncogénicas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Acetilación , Animales , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/mortalidad , Línea Celular Tumoral , Supervivencia Celular , Modelos Animales de Enfermedad , Xenoinjertos , Humanos , Hipoxia/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/mortalidad , Ratones , Modelos Moleculares , Proteínas Oncogénicas/química , Proteínas Oncogénicas/genética , Unión Proteica , Conformación Proteica , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Transporte de Proteínas , Estrés Fisiológico , Relación Estructura-Actividad , Sumoilación
20.
Cell Death Dis ; 9(10): 958, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30237481

RESUMEN

Glycine N-methyltransferase (GNMT) is the most abundant methyltransferase in the liver and a master regulator of the transmethylation flux. GNMT downregulation leads to loss of liver function progressing to fibrosis, cirrhosis, and hepatocellular carcinoma. Moreover, GNMT deficiency aggravates cholestasis-induced fibrogenesis. To date, little is known about the mechanisms underlying downregulation of GNMT levels in hepatic fibrosis and cirrhosis. On this basis, microRNAs are epigenetic regulatory elements that play important roles in liver pathology. In this work, we aim to study the regulation of GNMT by microRNAs during liver fibrosis and cirrhosis. Luciferase assay on the 3'UTR-Gnmt was used to confirm in silico analysis showing that GNMT is potentially targeted by the microRNA miR-873-5p. Correlation between GNMT and miR-873-5p in human cholestasis and cirrhosis together with miR-873-5p inhibition in vivo in different mouse models of liver cholestasis and fibrosis [bile duct ligation and Mdr2 (Abcb4)-/- mouse] were then assessed. The analysis of liver tissue from cirrhotic and cholestatic patients, as well as from the animal models, showed that miR-873-5p inversely correlated with the expression of GNMT. Importantly, high circulating miR-873-5p was also detected in cholestastic and cirrhotic patients. Preclinical studies with anti-miR-873-5p treatment in bile duct ligation and Mdr2-/- mice recovered GNMT levels in association with ameliorated inflammation and fibrosis mainly by counteracting hepatocyte apoptosis and cholangiocyte proliferation. In conclusion, miR-873-5p emerges as a novel marker for liver fibrosis, cholestasis, and cirrhosis and therapeutic approaches based on anti-miR-873-5p may be effective treatments for liver fibrosis and cholestatic liver disease.


Asunto(s)
Fibrosis/metabolismo , Fibrosis/patología , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Hígado/metabolismo , MicroARNs/metabolismo , Animales , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Proliferación Celular/genética , Proliferación Celular/fisiología , Glicina N-Metiltransferasa/genética , Glicina N-Metiltransferasa/metabolismo , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Humanos , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA