RESUMEN
In experiments considering cell handling in microchannels, cell sedimentation in the storage container is a key problem because it affects the reproducibility of the experiments. Here, a simple and low-cost cell mixing device (CMD) is presented; the device is designed to prevent the sedimentation of cells in a syringe during their injection into a microfluidic channel. The CMD is based on a slider crank device made of 3D-printed parts that, combined with a permanent magnet, actuate a stir bar placed into the syringe containing the cells. By using A549 cell lines, the device is characterized in terms of cell viability (higher than 95%) in different mixing conditions, by varying the oscillation frequency and the overall mixing time. Then, a dedicated microfluidic experiment is designed to evaluate the injection frequency of the cells within a microfluidic chip. In the presence of the CMD, a higher number of cells are injected into the microfluidic chip with respect to the static conditions (2.5 times), proving that it contrasts cell sedimentation and allows accurate cell handling. For these reasons, the CMD can be useful in microfluidic experiments involving single-cell analysis.
Asunto(s)
Dispositivos Laboratorio en un Chip , Humanos , Células A549 , Supervivencia Celular , Técnicas Analíticas Microfluídicas/instrumentación , Magnetismo/instrumentación , Separación Celular/instrumentación , Diseño de Equipo , Análisis de la Célula Individual/instrumentaciónRESUMEN
We studied the effects of vertical vibrations on a water drop that was pinned to the sharp edges of a rectangular post. By varying the frequency and amplitude of the vertical displacement, distinct resonance peaks were observed using a simple optical technique. The vibrational spectra of the first two modes exhibited two closely spaced peaks, which corresponded to standing waves that exist along the major and minor contour lengths of the drops. The values of the resonance frequencies can be explained rather well by a simple model, which was originally proposed for axially symmetric drops.
RESUMEN
Controlled splitting of liquid droplets is a key function in many microfluidic applications. In recent years, various methodologies have been used to accomplish this task. Here, we present an optofluidic technique based on an engineered surface formed by coating a z-cut iron-doped lithium niobate crystal with a lubricant-infused layer, which provides a very slippery surface. Illuminating the crystal with a light spot induces surface charges of opposite signs on the two crystal faces because of the photovoltaic effect. If the light spot is sufficiently intense, millimetric water droplets placed near the illuminated spot split into two charged fragments, one fragment being trapped by the bright spot and the other moving away from it. The latter fragment does not move randomly but rather follows one of three well-defined trajectories separated by 120°, which reflect the anisotropic crystalline structure of Fe:LiNbO3. Numerical simulations explain the behavior of water droplets in the framework of the forces induced by the interplay of pyroelectric, piezoelectric, and photovoltaic effects, which originate simultaneously inside the illuminated crystal. Such a synergetic effect can provide a valuable feature in applications that require splitting and coalescence of droplets, such as chemical microreactors and biological encapsulation and screening.
RESUMEN
Magnetic beads (or particles) having a size between 1 and 5 µm are largely used in many biochemical assays devoted to both purification and quantification of cells, nucleic acids, or proteins. Unfortunately, the use of these beads within microfluidic devices suffers from natural precipitation because of their size and density. The strategies applied thus far to cells or polymeric particles cannot be extended to magnetic beads, mainly due to their magnetization and their higher densities. We report an effective shaking device capable of preventing the sedimentation of beads that are stored in a custom PCR tube. After the characterization of the operating principle, the device is validated for magnetic beads in droplets, leading to an equal distribution between the droplets, barely affecting their generation.
Asunto(s)
Técnicas Analíticas Microfluídicas , Ácidos Nucleicos , Microfluídica , Campos Magnéticos , Dispositivos Laboratorio en un ChipRESUMEN
HYPOTHESIS: Droplets of yield stress fluids (YSFs), i.e. fluids that can flow only if they are subjected to a stress above a critical value and otherwise deform like solids, hardly move on solid surfaces due to their high viscosity. The use of highly slippery lubricated surfaces can shed light on the mobility of YSF droplets, which include everyday soft materials, such as toothpaste or mayonnaise, and biological fluids, such as mucus. EXPERIMENTS: The spreading and mobility of droplets of aqueous solutions of swollen Carbopol microgels were studied on lubricant infused surfaces. These solutions represent a model system of YSFs. Dynamical phase diagrams were established by varying the concentration of the solutions and the inclination angle of the surfaces. FINDINGS: Carbopol droplets deposited on lubricated surfaces could move even at low inclination angles. The droplets were found to slide because of the slip of the flowing oil that covered the solid substrate. However, as the descending speed increased, the droplets rolled down. Rolling was favored at high inclinations and low concentrations. A simple criterion based on the ratio between the yield stress of the Carbopol suspensions and the gravitational stress acting on the Carbopol droplets was found to nicely identify the transition between the two regimes.
RESUMEN
Recent years have witnessed relevant advancements in the quality of life of persons with lower limb amputations thanks to the technological developments in prosthetics. However, prostheses that provide information about the foot-ground interaction, and in particular about terrain irregularities, are still missing on the market. The lack of tactile feedback from the foot sole might lead subjects to step on uneven terrains, causing an increase in the risk of falling. To address this issue, a biomimetic vibrotactile feedback system that conveys information about gait and terrain features sensed by a dedicated insole has been assessed with intact subjects. After having shortly experienced both even and uneven terrains, the recruited subjects discriminated them with an accuracy of 87.5%, solely relying on the replay of the vibrotactile feedback. With the objective of exploring the human decoding mechanism of the feedback startegy, a KNN classifier was trained to recognize the uneven terrains. The outcome suggested that the subjects achieved such performance with a temporal dynamics of 45 ms. This work is a leap forward to assist lower-limb amputees to appreciate the floor conditions while walking, adapt their gait and promote a more confident use of their artificial limb.
Asunto(s)
Amputados , Miembros Artificiales , Humanos , Retroalimentación , Tecnología Háptica , Calidad de Vida , Extremidad Inferior , Pie , Caminata , Marcha , Fenómenos BiomecánicosRESUMEN
Correction for 'Developing an advanced gut on chip model enabling the study of epithelial cell/fibroblast interactions' by Marine Verhulsel et al., Lab Chip, 2021, 21, 365-377, https://doi.org/10.1039/d0lc00672f.
RESUMEN
The continuous monitoring of an individual's breathing can be an instrument for the assessment and enhancement of human wellness. Specific respiratory features are unique markers of the deterioration of a health condition, the onset of a disease, fatigue and stressful circumstances. The early and reliable prediction of high-risk situations can result in the implementation of appropriate intervention strategies that might be lifesaving. Hence, smart wearables for the monitoring of continuous breathing have recently been attracting the interest of many researchers and companies. However, most of the existing approaches do not provide comprehensive respiratory information. For this reason, a meta-learning algorithm based on LSTM neural networks for inferring the respiratory flow from a wearable system embedding FBG sensors and inertial units is herein proposed. Different conventional machine learning approaches were implemented as well to ultimately compare the results. The meta-learning algorithm turned out to be the most accurate in predicting respiratory flow when new subjects are considered. Furthermore, the LSTM model memory capability has been proven to be advantageous for capturing relevant aspects of the breathing pattern. The algorithms were tested under different conditions, both static and dynamic, and with more unobtrusive device configurations. The meta-learning results demonstrated that a short one-time calibration may provide subject-specific models which predict the respiratory flow with high accuracy, even when the number of sensors is reduced. Flow RMS errors on the test set ranged from 22.03 L/min, when the minimum number of sensors was considered, to 9.97 L/min for the complete setting (target flow range: 69.231 ± 21.477 L/min). The correlation coefficient r between the target and the predicted flow changed accordingly, being higher (r = 0.9) for the most comprehensive and heterogeneous wearable device configuration. Similar results were achieved even with simpler settings which included the thoracic sensors (r ranging from 0.84 to 0.88; test flow RMSE = 10.99 L/min, when exclusively using the thoracic FBGs). The further estimation of respiratory parameters, i.e., rate and volume, with low errors across different breathing behaviors and postures proved the potential of such approach. These findings lay the foundation for the implementation of reliable custom solutions and more sophisticated artificial intelligence-based algorithms for daily life health-related applications.
Asunto(s)
Inteligencia Artificial , Dispositivos Electrónicos Vestibles , Algoritmos , Humanos , Aprendizaje Automático , RespiraciónRESUMEN
The actuation of droplets on a surface is extremely relevant for microfluidic applications. In recent years, various methodologies have been used. A promising solution relies on iron-doped lithium niobate crystals that, when illuminated, generate an evanescent electric field in the surrounding space due to the photovoltaic effect. This field can be successfully exploited to control the motion of water droplets. Here, we present an experimental method to determine the attractive force exerted by the evanescent field. It consists of the analysis of the elongation of a pendant droplet and its detachment from the suspending syringe needle, caused by the illumination of an iron-doped lithium niobate crystal. We show that this interaction resembles that obtained by applying a voltage between the needle and a metallic substrate, and a quantitative investigation of these two types of actuation yields similar results. Pendant droplet tensiometry is then demonstrated to offer a simple solution for quickly mapping out the force at different distances from the crystal, generated by the photovoltaic effect and its temporal evolution, providing important quantitative data for the design and characterization of optofluidic devices based on lithium niobate crystals.
RESUMEN
Extracellular vesicles (EVs) are double-layered lipid membrane vesicles released by cells. Currently, EVs are attracting a lot of attention in the biological and medical fields due to their role as natural carriers of proteins, lipids, and nucleic acids. Thus, they can transport useful genomic information from their parental cell through body fluids, promoting cell-to-cell communication even between different organs. Due to their functionality as cargo carriers and their protein expression, they can play an important role as possible diagnostic and prognostic biomarkers in various types of diseases, e.g., cancers, neurodegenerative, and autoimmune diseases. Today, given the invaluable importance of EVs, there are some pivotal challenges to overcome in terms of their isolation. Conventional methods have some limitations: they are influenced by the starting sample, might present low throughput and low purity, and sometimes a lack of reproducibility, being operator dependent. During the past few years, several microfluidic approaches have been proposed to address these issues. In this review, we summarize the most important microfluidic-based devices for EV isolation, highlighting their advantages and disadvantages compared to existing technology, as well as the current state of the art from the perspective of the use of these devices in clinical applications.
Asunto(s)
Vesículas Extracelulares , Ácidos Nucleicos , Microfluídica , Reproducibilidad de los Resultados , Vesículas Extracelulares/metabolismo , Comunicación CelularRESUMEN
Surface-enhanced Raman scattering (SERS) is an ideal technique for environmental and biomedical sensor devices due to not only the highly informative vibrational features but also to its ultrasensitive nature and possibilities toward quantitative assays. Moreover, in these areas, SERS is especially useful as water hinders most of the spectroscopic techniques such as those based on IR absorption. Despite its promising possibilities, most SERS substrates and technological frameworks for SERS detection are still restricted to research laboratories, mainly due to a lack of robust technologies and standardized protocols. We present herein the implementation of Janus magnetic/plasmonic Fe3O4/Au nanostars (JMNSs) as SERS colloidal substrates for the quantitative determination of several analytes. This multifunctional substrate enables the application of an external magnetic field for JMNSs retention at a specific position within a microfluidic channel, leading to additional amplification of the SERS signals. A microfluidic device was devised and 3D printed as a demonstration of cheap and fast production, with the potential for large-scale implementation. As low as 100 µL of sample was sufficient to obtain results in 30 min, and the chip could be reused for several cycles. To show the potential and versatility of the sensing system, JMNSs were exploited with the microfluidic device for the detection of several relevant analytes showing increasing analytical difficulty, including the comparative detection of p-mercaptobenzoic acid and crystal violet and the quantitative detection of the herbicide flumioxazin and the anticancer drug erlotinib in plasma, where calibration curves within diagnostic concentration intervals were obtained.
Asunto(s)
Benzoatos/análisis , Benzoxazinas/análisis , Clorhidrato de Erlotinib/sangre , Violeta de Genciana/análisis , Nanopartículas de Magnetita/química , Ftalimidas/análisis , Compuestos de Sulfhidrilo/análisis , Antineoplásicos/sangre , Oro/química , Herbicidas/análisis , Humanos , Dispositivos Laboratorio en un Chip , Límite de Detección , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Impresión Tridimensional , Espectrometría Raman/instrumentación , Espectrometría Raman/métodosRESUMEN
The genus Giardia includes several species distinguished by morphological, biological and molecular features. Currently, eight species within the genus are retained as valid. In Italy no identification of Giardia species other than Giardia duodenalis has been so far reported. Fecal samples were collected from two Günther's Voles (Microtus guentheri) positive to Giardia cysts by microscopic investigation and immunofluorescence. The voles were born in Milan (Northern Italy) from two gravid females imported from the Netherlands and kept for sale in a pet shop in Varese (Northern Italy). Positive feces were subjected to a nested PCR to amplify a 18S rRNA fragment for molecular characterization. A phylogenetic analysis was conducted to compare the obtained sequence with those of all other Giardia species available in GenBank for the 18S locus, using the Maximum Likelihood (ML) method by R software. Sequence analyses unambiguously identified the isolates as belonging to G. microti, showing 99% of identity with those of its isolates available in GenBank. A well-defined cluster, supported by significant bootstrap values and corresponding to the G. microti cluster, including sequences obtained from M. guentheri, was evidenced in the ML tree, confirming species assignment. The present finding represents the first report of G. microti from pet animals in Italy.
Asunto(s)
Arvicolinae , Giardia/aislamiento & purificación , Giardiasis/diagnóstico , Animales , Heces/parasitología , Giardia/clasificación , Giardiasis/parasitología , Italia , Mascotas , Reacción en Cadena de la Polimerasa/veterinaria , ARN Protozoario/análisis , ARN Ribosómico 18S/análisisRESUMEN
Organoids are widely used as a model system to study gut pathophysiology; however, they fail to fully reproduce the complex, multi-component structure of the intestinal wall. We present here a new gut on chip model that allows the co-culture of primary epithelial and stromal cells. The device has the topography and dimensions of the mouse gut and is based on a 3D collagen I scaffold. The scaffold is coated with a thin layer of laminin to mimic the basement membrane. To maintain the scaffold structure while preserving its cytocompatibility, the collagen scaffold was rigidified by threose-based post-polymerization treatment. This treatment being cytocompatible enabled the incorporation of primary intestinal fibroblasts inside the scaffold, reproducing the gut stromal compartment. We observed that mouse organoids, when deposited into crypts, opened up and epithelialized the scaffold, generating a polarized epithelial monolayer. Proper segregation of dividing and differentiated cells along the crypt-villus axis was achieved under these conditions. Finally, we show that the application of fluid shear stress allows the long-term culture of this intestinal epithelium. Our device represents a new biomimetic tool that captures key features of the gut complexity and could be used to study gut pathophysiology.
Asunto(s)
Mucosa Intestinal , Intestinos , Animales , Comunicación Celular , Células Epiteliales , Fibroblastos , RatonesRESUMEN
The aim of Lab-on-a-chip systems is the downscaling of analytical protocols into microfluidic devices, including optical measurements. In this context, the growing interest of the scientific community in opto-microfluidic devices has fueled the development of new materials. Recently, lithium niobate has been presented as a promising material for this scope, thanks to its remarkable optical and physicochemical properties. Here, we present a novel microfluidic device realized starting from a lithium niobate crystal, combining engraved microfluidic channels with integrated and self-aligned optical waveguides. Notably, the proposed microfabrication strategy does not compromise the optical coupling between the waveguides and the microchannel, allowing one to measure the transmitted light through the liquid flowing in the channel. In addition, the device shows a high versatility in terms of the optical properties of the light source, such as wavelength and polarization. Finally, the developed opto-microfluidic system is successfully validated as a probe for real-time pH monitoring of the liquid flowing inside the microchannel, showing a high integrability and fast response.
RESUMEN
Magnetic solid phase substrates for biomolecule manipulation have become a valuable tool for simplification and automation of molecular biology protocols. However, the handling of magnetic particles inside microfluidic chips for miniaturized assays is often challenging due to inefficient mixing, aggregation, and the advanced instrumentation required for effective actuation. Here, we describe the use of a microfluidic magnetic fluidized bed approach that enables dynamic, highly efficient and simplified magnetic bead actuation for DNA analysis in a continuous flow platform with minimal technical requirements. We evaluate the performance of this approach by testing the efficiency of individual steps of a DNA assay based on padlock probes and rolling circle amplification. This assay comprises common nucleic acid analysis principles, such as hybridization, ligation, amplification and restriction digestion. We obtained efficiencies of up to 90% for these reactions with high throughput processing up to 120µL of DNA dilution at flow rates ranging from 1 to 5µL/min without compromising performance. The fluidized bed was 20-50% more efficient than a commercially available solution for microfluidic manipulation of magnetic beads. Moreover, to demonstrate the potential of this approach for integration into micro-total analysis systems, we optimized the production of a low-cost polymer based microarray and tested its analytical performance for integrated single-molecule digital read-out. Finally, we provide the proof-of-concept for a single-chamber microfluidic chip that combines the fluidized bed with the polymer microarray for a highly simplified and integrated magnetic bead-based DNA analyzer, with potential applications in diagnostics.
Asunto(s)
Técnicas Biosensibles/métodos , ADN/aislamiento & purificación , Técnicas Analíticas Microfluídicas/métodos , Técnicas de Diagnóstico Molecular/métodos , ADN/química , Dispositivos Laboratorio en un Chip , Magnetismo , Hibridación de Ácido NucleicoRESUMEN
During tumor progression, cancer cells acquire the ability to escape the primary tumor and invade adjacent tissues. They migrate through the stroma to reach blood or lymphatics vessels that will allow them to disseminate throughout the body and form metastasis at distant organs. To assay invasion capacity of cells in vitro, multicellular spheroids of cancer cells, mimicking primary tumor, are commonly embedded in collagen I extracellular matrix, which mimics the stroma. However, due to their higher density, spheroids tend to sink at the bottom of the collagen droplets, resulting in the spreading of the cells on two dimensions. We developed an innovative method based on droplet microfluidics to embed and control the position of multicellular spheroids inside spherical droplets of collagen. In this method cancer cells are exposed to a uniform three-dimensional (3D) collagen environment resulting in 3D cell invasion.
Asunto(s)
Colágeno/química , Microfluídica/métodos , Invasividad Neoplásica , Esferoides Celulares/citología , Animales , Línea Celular Tumoral , Movimiento Celular , Humanos , Ratones , Microfluídica/instrumentación , Modelos Biológicos , Células 3T3 NIH , Esferoides Celulares/patologíaRESUMEN
Analyses of nucleic acids are routinely performed in hospital laboratories to detect gene alterations for cancer diagnosis and treatment decision. Among the different possible investigations, mRNA analysis provides information on abnormal levels of genes expression. Standard laboratory methods are still not adapted to the isolation and quantitation of low mRNA amounts and new techniques needs to be developed in particular for rare subsets analysis. By reducing the volume involved, time process, and the contamination risks, droplet microfluidics provide numerous advantages to perform analysis down to the single cell level.We report on a droplet microfluidic platform based on the manipulation of magnetic particles that allows the clinical analysis of tumor tissues. In particular, it allows the extraction of mRNA from the total-RNA sample, Reverse Transcription, and cDNA amplification, all in droplets.
Asunto(s)
Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Microfluídica/instrumentación , Microfluídica/métodos , Neoplasias/diagnóstico , Biomarcadores de Tumor , Humanos , Neoplasias/genética , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Flujo de TrabajoRESUMEN
In this work, we have investigated Dyneon THV, a fluorinated material, as a new material to afford electrokinetic separations in microfluidic devices. To overcome protein adsorption, two poly(ethylene oxide) (PEO)-based coatings have been investigated: Pluronic F127 and PEO stearate 40. The best results were obtained with the PEO stearate 40 coating which allowed decreasing the surface contact angle from 91 ± 3 to 76°± 3. With this surface treatment, a 66% reduction of the electroosmotic mobility at pH 8.0 and a marked suppression of protein adsorption were observed compared to a native Dyneon THV microchip. Finally, a separation of fluorescently labeled proteins (bovine serum albumin and trypsin inhibitor), well-known for their strong tendency to adsorb on hydrophobic surfaces, was successfully achieved in an HEPES buffer with a PEO stearate 40 treated microchip by capillary zone electrophoresis. Furthermore, we demonstrated the possibility to perform non-aqueous capillary electrophoresis analysis of hydrophobic dyes using various solvents in untreated microchips. The overall results demonstrated not only the suitability of the Dyneon THV microchip for electrokinetic separations, but also its versatility allowing different separation modes to be implemented with the same microchip material.
RESUMEN
The development of precision medicine, together with the multiplication of targeted therapies and associated molecular biomarkers, call for major progress in genetic analysis methods, allowing increased multiplexing and the implementation of more complex decision trees, without cost increase or loss of robustness. We present a platform combining droplet microfluidics and magnetic tweezers, performing RNA purification, reverse transcription and amplification in a fully automated and programmable way, in droplets of 250nL directly sampled from a microtiter-plate. This platform decreases sample consumption about 100 fold as compared to current robotized platforms and it reduces human manipulations and contamination risk. The platform's performance was first evaluated on cell lines, showing robust operation on RNA quantities corresponding to less than one cell, and then clinically validated with a cohort of 21 breast cancer samples, for the determination of their HER2 expression status, in a blind comparison with an established routine clinical analysis.
Asunto(s)
Fenómenos Magnéticos , Microfluídica/métodos , Neoplasias/diagnóstico , Neoplasias/metabolismo , Receptor ErbB-2/metabolismo , Calibración , Línea Celular Tumoral , HumanosRESUMEN
We report the results of comprehensive experiments and numerical calculations of interfacial morphologies of water confined to the hydrophilic top face of rectangular posts of width W = 500 µm and lengths between L = 5W and 30W. A continuous evolution of the interfacial shape from a homogeneous liquid filament to a bulged filament and back is observed during changes in the liquid volume. Above a certain threshold length of L* = 16.0W, the transition between the two morphologies is discontinuous and a bistability of interfacial shapes is observed in a certain interval of the reduced liquid volume V/W(3).