Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chemistry ; 25(67): 15248-15251, 2019 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-31529648

RESUMEN

Hybrid materials that combine diureasil matrices and octahedral molybdenum clusters have been synthesized to design lead-, cadmium- and rare-earth-free emitters for lighting or optoelectronic applications. This association leads to homogeneous and stable hybrids, for which the emission color can be tailored in the entire visible range, including white light; this is thanks to effective energy transfers from the host to the nanocluster.

2.
J Biomed Mater Res B Appl Biomater ; 106(2): 742-750, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28334507

RESUMEN

Jeffamines® are a family of polymers containing primary amine groups attached to the extremities of polyether backbone which can be used as biomaterials. They have been used in combination with polyethylenimine (PEI) to improve biocompatibility in drug and gene delivery systems. Despite these facts, very few studies have been done on cytotoxicity and genotoxicity of pure Jeffamines® or compared with PEI. The present study aimed to evaluate and compare the cytotoxic and genotoxic effects of Jeffamines® and PEI in CHO-K1 cells. Specifically, polypropylene oxide 2000 (PPO 2000, Jeffamine® D series), polyethylene oxide 1900 (PEO 1900, Jeffamine® ED series), branched 25 kDa PEI, and linear 20 kDa PEI were evaluated at different concentrations. Cell viability and proliferation were assessed by 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) and 5-bromo-2'-deoxyuridine (BrdU) assays, respectively. Genotoxicity was evaluated using single cell gel electrophoresis assay and the cytokinesis-blocked micronucleus assay. PPO 2000 was the most cytotoxic Jeffamine® , whereas PEO 1900 did not caused significant cell death at any tested concentration. Branched PEI was more cytotoxic than linear PEI (LPEI) and both were more cytotoxic than Jeffamines® . Only PPO 2000 induced DNA damage when evaluated in comet assay probably due to its cytotoxicity. PPO 2000, PEO 1900, and PEI did not increase the frequency of micronuclei when tested at sub-cytotoxic concentrations. This work provides new insights about biocompatibility of Jeffamines® and PEI and suggests the genotoxicological safety for further investigations of PEO 1900 in drug and gene delivery systems. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 742-750, 2018.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Daño del ADN , Animales , Células CHO , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cricetulus , Evaluación Preclínica de Medicamentos , Polietileneimina/efectos adversos , Polietileneimina/farmacología , Polímeros/efectos adversos , Polímeros/farmacología , Glicoles de Propileno/efectos adversos , Glicoles de Propileno/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA