Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Sci Transl Med ; 15(681): eabq5068, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36724241

RESUMEN

Immunogenicity against intravitreally administered brolucizumab has been previously described and associated with cases of severe intraocular inflammation, including retinal vasculitis/retinal vascular occlusion (RV/RO). The presence of antidrug antibodies (ADAs) in these patients led to the initial hypothesis that immune complexes could be key mediators. Although the formation of ADAs and immune complexes may be a prerequisite, other factors likely contribute to some patients having RV/RO, whereas the vast majority do not. To identify and characterize the mechanistic drivers underlying the immunogenicity of brolucizumab and the consequence of subsequent ADA-induced immune complex formation, a translational approach was performed to bridge physicochemical characterization, structural modeling, sequence analysis, immunological assays, and a quantitative systems pharmacology model that mimics physiological conditions within the eye. This approach revealed that multiple factors contributed to the increased immunogenic potential of brolucizumab, including a linear epitope shared with bacteria, non-natural surfaces due to the single-chain variable fragment format, and non-native drug species that may form over prolonged time in the eye. Consideration of intraocular drug pharmacology and disease state in a quantitative systems pharmacology model suggested that immune complexes could form at immunologically relevant concentrations modulated by dose intensity. Assays using circulating immune cells from treated patients or treatment-naïve healthy volunteers revealed the capacity of immune complexes to trigger cellular responses such as enhanced antigen presentation, platelet aggregation, endothelial cell activation, and cytokine release. Together, these studies informed a mechanistic understanding of the clinically observed immunogenicity of brolucizumab and associated cases of RV/RO.


Asunto(s)
Complejo Antígeno-Anticuerpo , Análisis de Causa Raíz , Humanos , Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Inflamación , Inhibidores de la Angiogénesis , Inyecciones Intravítreas
2.
Pharmaceutics ; 14(6)2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35745826

RESUMEN

The success of biotherapeutics is often challenged by the undesirable events of immunogenicity in patients, characterized by the formation of anti-drug antibodies (ADA). Under specific conditions, the ADAs recognizing the biotherapeutic can trigger the formation of immune complexes (ICs), followed by cascades of subsequent effects on various cell types. Hereby, the connection between the characteristics of ICs and their downstream impact is still not well understood. Factors governing the formation of ICs and the characteristics of these IC species were assessed systematically in vitro. Classic analytical methodologies such as SEC-MALS and SV-AUC, and the state-of-the-art technology mass photometry were applied for the characterization. The study demonstrates a clear interplay between (1) the absolute concentration of the involved components, (2) their molar ratios, (3) structural features of the biologic, (4) and of its endogenous target. This surrogate study design and the associated analytical tool-box is readily applicable to most biotherapeutics and provides valuable insights into mechanisms of IC formation prior to FIH studies. The applicability is versatile-from the detection of candidates with immunogenicity risks during developability assessment to evaluation of the impact of degraded or post-translationally modified biotherapeutics on the formation of ICs.

3.
Anal Biochem ; 386(2): 237-43, 2009 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-19135971

RESUMEN

The monoclonal antibodies (mAbs) ALMA.17 and ALMA.7 recognize human platelet membrane proteins. ALMA.17 is directed against alpha(IIb)beta(3) integrin, but the target of ALMA.7 was unknown previously. Tandem Biacore micropurification and mass spectrometry (MS) analysis of a platelet membrane lysate was used to identify the target of ALMA.7. Detergent lysates enriched in membrane proteins were perfused over immobilized ALMA.17 or ALMA.7 in a Biacore system. The captured proteins were eluted, concentrated on C3 magnetic beads, and digested with trypsin before nano liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Critical adjustments needed to be made in (i) the detergent mixture to preserve protein antigenicity and sensor chip integrity and (ii) the method of trypsin digestion to concentrate the proteins and use elution buffers that do not interfere with MS. The target of ALMA.17 was confirmed to be alpha(IIb)beta(3) integrin, whereas that of ALMA.7 was identified as CD226 (PTA-1, DNAM-1, TLiSa-1). This was confirmed by immunoassays comparing ALMA.7 with a commercial anti-CD226 mAb. Thus, a tandem Biacore and nano LC-MS/MS strategy allowed unambiguous identification of an unknown antigen in a complex medium such as a platelet membrane lysate. This strategy may be employed to identify any protein "capturable" on a sensor chip provided that one uses appropriate experimental conditions.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Plaquetas/química , Proteínas de la Membrana/inmunología , Espectrometría de Masas en Tándem/métodos , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/metabolismo , Antígenos de Diferenciación de Linfocitos T/química , Antígenos de Diferenciación de Linfocitos T/inmunología , Plaquetas/metabolismo , Humanos , Proteínas de la Membrana/análisis , Proteínas de la Membrana/química , Ratones , Reproducibilidad de los Resultados , Resonancia por Plasmón de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA