Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Viruses ; 16(3)2024 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-38543797

RESUMEN

Torque Teno Virus (TTV) is a nonpathogenic and ubiquitous ssDNA virus, a member of the Anelloviridae family. TTV has been postulated as a biomarker in transplant patients. This study aimed to determine the TTV species diversity and variability in renal transplant recipients and to associate species diversity with the corresponding TTV viral load. From 27 recipients, 30 plasma samples were selected. Viral load was determined using two real-time PCR assays, followed by RCA-NGS and ORF1 phylogenetic analysis. The TTV diversity was determined in all samples. Variability was determined in three patients with two sequential samples (pre- and post-transplantation). Most of the samples presented multiple TTV species, up to 15 different species were detected. In the pre-transplant samples (n = 12), the most prevalent species were TTV3 (75%) and TTV13 (75%), and the median number of species per sample was 5 (IQR: 4-7.5). TTV3 was also the most prevalent (56%) in the post-transplant samples (n = 18), and the median number of species was 2 (IQR: 1.8-5.5). No significant correlation between the number of species and viral load was found. The number and type of TTV species showed total variability over time. We report high TTV species diversity in Argentinian recipients, especially in pre-transplant period, with total intra-host variability. However, we found no significant correlation between this high diversity and TTV viral load.


Asunto(s)
Infecciones por Virus ADN , Trasplante de Riñón , Torque teno virus , Humanos , Torque teno virus/genética , Trasplante de Riñón/efectos adversos , Filogenia , Receptores de Trasplantes , Carga Viral , ADN Viral/genética
2.
Sci Rep ; 13(1): 18033, 2023 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-37865714

RESUMEN

Cause of Kawasaki disease (KD) is unknown. KD is often resistant to treatment with intravenous immunoglobulin (IVIG). Sano's score, which is derived from total bilirubin (TBIL), aspartate aminotransferase (AST) and C-reactive protein (CRP), is predictive of IVIG resistance in Japan. A recent study reported that Torquetenovirus (TTV), especially TTV7, was present at a high viral load in the patients with KD. We used PCR to quantify TTV load and amplicon next generation sequencing to detect individual TTV species. We used serum samples that were collected between 2002 and 2005 from 57 Japanese KD patients before IVIG treatment. Correlations between TTV load and Sano's score, the biomarkers that constitute this score, and IVIG resistance were examined. TTV load was positively correlated with Sano's score (P = 0.0248), TBIL (P = 0.0004), and AST (P = 0.0385), but not with CRP (P = 0.6178). TTV load was marginally correlated with IVIG resistance (P = 0.1544). Presence of TTV7 was correlated with total TTV load significantly (P = 0.0231). The correlations between biomarkers for KD and TTV load suggested that TTV may play a role in the pathophysiology of KD. We hypothesize that TTV7 may be associated with a higher total viral load in KD.


Asunto(s)
Síndrome Mucocutáneo Linfonodular , Torque teno virus , Humanos , Inmunoglobulinas Intravenosas/uso terapéutico , Torque teno virus/genética , Síndrome Mucocutáneo Linfonodular/complicaciones , Aspartato Aminotransferasas , Carga Viral , Bilirrubina , Biomarcadores , Proteína C-Reactiva , Estudios Retrospectivos
3.
Antiviral Res ; 216: 105664, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37414288

RESUMEN

Recent evidence suggests that lipids play a crucial role in viral infections beyond their traditional functions of supplying envelope and energy, and creating protected niches for viral replication. In the case of Zika virus (ZIKV), it alters host lipids by enhancing lipogenesis and suppressing ß-oxidation to generate viral factories at the endoplasmic reticulum (ER) interface. This discovery prompted us to hypothesize that interference with lipogenesis could serve as a dual antiviral and anti-inflammatory strategy to combat the replication of positive sense single-stranded RNA (ssRNA+) viruses. To test this hypothesis, we examined the impact of inhibiting N-Acylethanolamine acid amidase (NAAA) on ZIKV-infected human Neural Stem Cells. NAAA is responsible for the hydrolysis of palmitoylethanolamide (PEA) in lysosomes and endolysosomes. Inhibition of NAAA results in PEA accumulation, which activates peroxisome proliferator-activated receptor-α (PPAR-α), directing ß-oxidation and preventing inflammation. Our findings indicate that inhibiting NAAA through gene-editing or drugs moderately reduces ZIKV replication by approximately one log10 in Human Neural Stem Cells, while also releasing immature virions that have lost their infectivity. This inhibition impairs furin-mediated prM cleavage, ultimately blocking ZIKV maturation. In summary, our study highlights NAAA as a host target for ZIKV infection.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Humanos , Amidohidrolasas/antagonistas & inhibidores , Amidohidrolasas/metabolismo , Antiinflamatorios/farmacología , Inflamación/tratamiento farmacológico , Infección por el Virus Zika/tratamiento farmacológico
4.
Int J Mol Sci ; 24(10)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37240024

RESUMEN

A next-generation sequencing (NGS) study identified a very high viral load of Torquetenovirus (TTV) in KD patients. We aimed to evaluate the feasibility of a newly developed quantitative species-specific TTV-PCR (ssTTV-PCR) method to identify the etiology of KD. We applied ssTTV-PCR to samples collected from 11 KD patients and 22 matched control subjects who participated in our previous prospective study. We used the NGS dataset from the previous study to validate ssTTV-PCR. The TTV loads in whole blood and nasopharyngeal aspirates correlated highly (Spearman's R = 0.8931, p < 0.0001, n = 33), supporting the validity of ssTTV-PCR. The ssTTV-PCR and NGS results were largely consistent. However, inconsistencies occurred when ssTTV-PCR was more sensitive than NGS, when the PCR primer sequences mismatched the viral sequences in the participants, and when the NGS quality score was low. Interpretation of NGS requires complex procedures. ssTTV-PCR is more sensitive than NGS but may fail to detect a fast-evolving TTV species. It would be prudent to update primer sets using NGS data. With this precaution, ssTTV-PCR can be used reliably in a future large-scale etiological study for KD.


Asunto(s)
Infecciones por Virus ADN , Síndrome Mucocutáneo Linfonodular , Reacción en Cadena de la Polimerasa , Torque teno virus , Torque teno virus/genética , Torque teno virus/aislamiento & purificación , Síndrome Mucocutáneo Linfonodular/virología , Reacción en Cadena de la Polimerasa/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Conjuntos de Datos como Asunto , Humanos , Masculino , Femenino , Lactante , Preescolar , Niño , Estudios Prospectivos , ADN Viral/genética , ADN Viral/aislamiento & purificación , Infecciones por Virus ADN/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA