Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Med Vet Entomol ; 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39400392

RESUMEN

In Mexico, Triatoma pallidipennis is a major vector of Trypanosoma cruzi, the causative agent of Chagas disease. Current efforts are focused on developing attractants to control these vectors, using volatile substances derived from vertebrate hosts or compounds known to attract hematophagous insects. However, the efficacy of these compounds in attracting parasite-infected triatomines remains to be evaluated. In this study, we assessed the attractant activity of octenol (1-octen-3-ol), nonanal and a mixture of odorants consisting of ammonium hydroxide, lactic acid and hexanoic acid (in a ratio of 1:0.2:0.4 respectively), at concentrations of 1, 10 and 100 ng on the N3, N4 and N5 nymphal stages of T. pallidipennis, both infected and non-infected with T. cruzi. We also evaluated the synergistic effect of the most effective compounds and doses. All experiments were performed in a laboratory using a Y-type glass olfactometer. We found that both infected and non-infected N3 and N4 nymphs were attracted to low doses of octenol, nonanal and the odorant mixture. Particularly noteworthy was the synergistic effect observed between the odorant mixture and nonanal, which significantly increased attraction of T. cruzi-infected individuals. These findings contribute to the development of baited traps utilising these compounds for monitoring triatomines in epidemiological studies or for mass trapping to control these vectors.

2.
ChemMedChem ; : e202400241, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136604

RESUMEN

A series of novel 4-acetyl-1,3,4-oxadiazole derivatives was designed and synthesized for their biological evaluation in vitro against Trypanosoma cruzi (T. cruzi) and Leishmania mexicana (L. mexicana). Additionally, all compounds were evaluated by molecular docking on the cruzain of T. cruzi (TcCz) and the cysteine protease B (CPB) of L. mexicana (LmCPB) to know their potential mechanism of binding. Compound OX-12 had better trypanocidal activity against NINOA (IC50=10.5 µM) and A1 (IC50=21.7 µM) T. cruzi strains that reference drug benznidazole (IC50=30.3 µM and 39.8 µM, respectively). Compound OX-2 had the best biological activity against L. mexicana in M379 (IC50=11.9 µM) and FCQEPS (IC50=34.0 µM) strains that the reference drug glucantime (IC50>120 µM). All the compounds showed important interactions with residues on the active site of TcCz (Gly66, Trp26, Leu67, and Ala138) and LmCPB (Gly67, Asn62, Leu68, and Ala140). Finally, the molecular dynamics simulations of the compound OX-12 shown moderate stability from 40-115 ns with an RMSD value of 6.5 Å. Meanwhile, compound OX-2 showed a minor stability in complex with CPB from 25-200 ns of simulation (RMSD<9 Å). These results encourage to develop more potent and efficient trypanocidal and leishmanicidal agents using the 1,3,4-oxadiazole scaffold.

3.
J Parasitol Res ; 2024: 4775361, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38495541

RESUMEN

Ecoepidemiology is an emerging field that attempts to explain how biotic, environmental, and even social factors influence the dynamics of infectious diseases. Particularly in vector-borne diseases, the study under this approach offers us an overview of the pathogens, vectors, and hosts that coexist in a given region and their ecological determinants. As a result of this, risk predictions can be established in a changing environment and how it may impact human populations. This paper is aimed at evaluating some ecoepidemiological characteristics of Chagas disease in a natural reserve in southeastern Mexico that borders human settlements. We carry out a cross-sectional study in 2022 where we search insects manually and with light traps. We set traps for small mammals and bats and conducted interviews with the inhabitants living around the study site. We identified the presence of Triatoma dimidiata and T. huehuetenanguensis species with a percentage of TcI T. cruzi infection of 68.4% (95% CI: 66.9-69.9). Temperature and humidity were not determining factors for the probability of insect capture. Of the 108 wild mammals (Chiroptera, Rodentia, and Didelphimorphia), none was infected with T. cruzi. Knowledge about Chagas disease in nearby inhabitants is poor, and some characteristics were found on the periphery of dwellings that could offer a refuge for insect vectors. With this information, surveillance strategies can be generated in the study area that reduce the risk of transmission of T. cruzi parasite to humans, and it is expected to motivate the use of this field in future research.

4.
Pathogens ; 11(10)2022 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-36297198

RESUMEN

Trypanosoma cruzi is a parasite transmitted by the feces of triatomines. Many triatomine species are found in Mexico, and various T. cruzi variants have been isolated from these species, each showing very different virulence and cell tropism. The isolates were obtained from Meccus phyllosoma specimens in three localities in the state of Oaxaca, Mexico: Tehuantitla, Vixhana, and Guichivere. The virulence of each isolate was assessed by quantifying parasitemia, survival, and histopathologic findings. The lineage of each isolate was identified using the mini-exon gene. The expression of the tssa gene during infection was detected in the heart, esophagus, gastrocnemius, and brain. Our results show that the maximum post-infection parasitemia was higher for the Tehuantitla isolate. On genotyping, all isolates were identified as T. cruzi I. The amastigotes in the heart and gastrocnemius were verified for all isolates, but in the brain only for Tehuantitla and Vixhana. The tssa expression allowed us to detect T. cruzi isolates, for Tehuantitla, predominantly in the heart. For Vixhana, a higher tssa expression was detected in gastrocnemius, and for Guichivere, it was higher in the esophagus. Results show that virulence, tropism, and tssa expression can vary, even when the isolates are derived from the same vector species, in the same region, and at similar altitudes.

5.
Zookeys ; 1084: 139-150, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35177949

RESUMEN

A wide variety of mammals are involved in the sylvatic cycle of Trypanosomacruzi, the causative agent of Chagas disease. In many areas in Latin America where T.cruzi is endemic, this cycle is poorly known, and its main reservoirs have not been identified. In this study we analyzed T.cruzi infection in bats and other small mammals from an Ecological Reserve in southeastern Mexico. From January through March 2021, we captured wild individuals to extract cardiac and peripheral blood, and infection was detected by PCR of the mini-exon gene. In bats, the prevalence of infection was 16.36%, while in small mammals the prevalence was 28.57%. All of the samples that were positive for T.cruzi were identified as the TCI genotype. Our findings suggest that this zone, situated at the periphery of urban zones might have epidemiological relevance in the sylvatic cycle of T.cruzi and needs to be monitored. The infection of bats in this area is particularly concerning since the flight pattern of this populations overlaps with human settlements. Despite being subject to conservation protections, there continue to be anthropogenic actions that disturb the study area, which could exacerbate risks to public health.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA