Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biomolecules ; 12(11)2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36421726

RESUMEN

Considerable efforts have been spent on the development of biodefensives based on the encapsulation of essential oils for controlling of urban pests from their larval stage, especially as anopheline controlling agents. The larval source management of Anopheles aquasalis is important for malaria prevention. For this reason, this research proposes larvicidal biodefensives based on polymeric particles loaded with Piper nigrum essential oil, considering the influence of temperature (35 °C) and preservatives on the formulation stability. The biodefensive containing the preservative phenoxyethanol/methylisothiazolinone (PNE) resulted in 5 months of shelf-life storage with an Encapsulation Efficiency (EE%) of essential oil of 70%. The biodefensive PNE (containing 500 µg.mL-1 of encapsulated essential oil) presented a polydisperse particle size distribution, ranging from D10 = (127 ± 10) nm to D90 = (472 ± 78) nm and a particle mean size of (236 ± 34) nm. The AFM images revealed a spherical morphology with an external surface almost regular and smooth. The controlled release of the essential oil was evaluated up to 72 h according to the Korsmeyer-Peppas mathematical model, confirming the anomalous transport (n = 0.64 in pH = 3 and pH = 10, and n = 0.65 in pH = 7). The total larvae mortality on the in loco bioassays was almost reached (92%) after 24 h. However, according to the in vitro bioassays applying the in natura essential oil alone, the concentration of 454 µg.mL-1 resulted on the mortality of 70% of the larvae after 24 h. For this reason, the highest efficiency of the biodefensive PNE may be related to the encapsulation of essential oil, delivering the loaded particles more efficiently inside the larvae. From this perspective, the present study shows that a formulation based on P. nigrum essential oil may be taken into account in the integrated management of disease vector mosquitoes.


Asunto(s)
Anopheles , Aceites Volátiles , Piper nigrum , Animales , Larva , Aceites Volátiles/farmacología , Temperatura , Mosquitos Vectores
2.
Materials (Basel) ; 15(20)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36295339

RESUMEN

Molecularly imprinted membrane of ß-caryophyllene (MIM-ßCP) was fabricated incorporating ß-caryophyllene molecularly imprinted polymer nanoparticles (ßCP-NP) into polycaprolactone (PCL) fibers via electrospinning. The ßCP-NP were synthesized by precipitation polymerization using the ßCP as a template molecule and acrylic acid as a functional monomer in the proportion of 1:4 mol, respectively. Atomic force microscopy images and X-ray diffraction confirmed the nanoparticles' incorporation into MIM-ßCP. MIM-ßCP functionalization was evaluated by gas chromatography. The binding capacity was 1.80 ± 0.05 µmol/cm2, and the selectivity test was performed with a mixing solution of ßCP and caryophyllene oxide, as an analog compound, that extracted 77% of the ßCP in 5 min. The electrospun MIM-ßCP can be used to detect and extract the ßCP, applications in the molecular sieve, and biosensor production and may also contribute as an initial methodology to enhance versatile applications in the future, such as in the treatment of skin diseases, filters for extraction, and detection of ßCP to prevent counterfeiting of commercial products, and smart clothing with insect-repellent properties.

3.
Acta sci., Biol. sci ; 38(2): 215-220, abr.-jun. 2016.
Artículo en Inglés | LILACS | ID: biblio-2534

RESUMEN

Leaves surfaces, which represent an interface with plants and the environment, have several structures with specific functions. Some foliar properties, including wettability and mechanical containment, are inferred in terms of cellular adaptation and the presence or absence of cuticular wax. Various morphological parameters, ranging from macro- to nano scales, are analyzed and contribute to the study of taxonomy, pharmacognosy, and ecology of plants. The aim of this paper was to analyze the effect and influence of epicuticular wax granules on the hydrophobicity of Anacardium occidentale L. leaf surfaces. Leaf specimens were directly examined with an environmental scanning electron microscope without metal coating. Images revealed epidermis ornament, stomata type, was, and trichomes. Static contact angle between water and the surface was also measured on both sides. On the adaxial side, an angle of 104.09° ± 0.95° was found, suggesting that adaxial surface is hydrophobic. On the abaxial side, the angle was 62.20° ± 1.60°, which indicates a hydrophilic nature, probably because of the greater amount of epicuticular wax on the adaxial leaf surface. The present investigation provided an important contribution to morphological and ultrastructural characterization of leaves of cashew tree, which is a plant of great medicinal and economic importance.


Superfícies de folhas têm diversas estruturas com funções específicas e contribuem para a relação delas com o meio ambiente. Algumas propriedades foliares, incluindo molhabilidade e contenção mecânica, são inferidas em termos de adaptação celular e da presença ou ausência de cera cuticular. Diversos parâmetros morfológicos, variando da macroescala até a nanoescala, são analisados e contribuem para o estudo de taxonomia, farmacognosia e ecologia de plantas. O objetivo deste trabalho foi analisar o efeito e a influência de grãos de cera epicuticular na hidrofobicidade da superfície de folhas de Anacardium occidentale L. Amostras de folha foram examinadas com um microscópio eletrônico de varredura ambiental sem recobrimento metálico. As imagens evidenciaram algumas características (epiderme, tipo de estômato, cera e tricomas). O ângulo de contato estático entre a água e a superfície também foi medido em ambos os lados. No lado adaxial, foi encontrado um ângulo de 104,09° ± 0,95°, sugerindo que esta é hidrofóbica. No lado abaxial, o ângulo foi de 62,20° ± 1,60°, que indica uma natureza hidrofílica, provavelmente devido à grande quantidade de cera epicuticular na superfície abaxial da folha. A presente investigação forneceu uma contribuição importante para a caracterização morfológica e ultra-estrutural de folhas de cajueiro, que é uma planta de grande importância econômica.


Asunto(s)
Humectabilidad , Anacardium , Microscopía Electrónica , Ecosistema Amazónico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA