Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Prostate ; 74(11): 1107-17, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24913716

RESUMEN

BACKGROUND: The endocannabinoid system regulates cancer cell proliferation, and in prostate cancer a high cannabinoid CB1 receptor expression is associated with a poor prognosis. Down-stream mediators of CB1 receptor signaling in prostate cancer are known, but information on potential upstream regulators is lacking. RESULTS: Data from a well-characterized tumor tissue microarray were used for a Bayesian network analysis using the max-min hill-climbing method. In non-malignant tissue samples, a directionality of pEGFR (the phosphorylated form of the epidermal growth factor receptor) → CB1 receptors were found regardless as to whether the endocannabinoid metabolizing enzyme fatty acid amide hydrolase (FAAH) was included as a parameter. A similar result was found in the tumor tissue, but only when FAAH was included in the analysis. A second regulatory pathway, from the growth factor receptor ErbB2 → FAAH was also identified in the tumor samples. Transfection of AT1 prostate cancer cells with CB1 receptors induced a sensitivity to the growth-inhibiting effects of the CB receptor agonist CP55,940. The sensitivity was not dependent upon the level of receptor expression. Thus a high CB1 receptor expression alone does not drive the cells towards a survival phenotype in the presence of a CB receptor agonist. CONCLUSIONS: The data identify two potential regulators of the endocannabinoid system in prostate cancer and allow the construction of a model of a dysregulated endocannabinoid signaling network in this tumor. Further studies should be designed to test the veracity of the predictions of the network analysis in prostate cancer and other solid tumors.


Asunto(s)
Neoplasias de la Próstata/patología , Neoplasias de la Próstata/fisiopatología , Receptor Cannabinoide CB1/fisiología , Transducción de Señal/fisiología , Análisis de Matrices Tisulares/métodos , Amidohidrolasas/fisiología , Teorema de Bayes , Proliferación Celular , Receptores ErbB/fisiología , Humanos , Masculino , Glicoproteínas de Membrana/fisiología , Pronóstico , Neoplasias de la Próstata/diagnóstico , Receptor ErbB-2/fisiología , Estudios Retrospectivos
2.
Cell Cycle ; 10(20): 3598-607, 2011 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-22030621

RESUMEN

Myc is a transcription factor frequently found deregulated in human cancer. The Myc-mediated cellular transformation process is associated with fast proliferative cells and inherent genomic instability, giving rise to malignant, invasive neoplasms with poor prognosis for survival. Transcription-independent functions of Myc include stimulation of replication. Excessive Myc expression stimulates a replication-associated DNA damage response that signals via the phosphoinositide-3-kinase (PI3K)-related protein kinases (PIKKs) ATM and ATR. These, in turn, activate the DNA damage transducers Chk1 and Chk2. Here, we show that Myc can stimulate Chek2 transcript indirectly in vitro as well as in B cells of λ-Myc transgenic mice or in the intestine of Apc (Min) mice. However, Chk2 is dispensable for Myc's ability to transform cells in vitro and for the survival of established lymphoma cells from λ-Myc transgenic mice. Chk2 deficiency induces polyploidy and slow growth, but the cells are viable and protected against DNA damage. Furthermore, inhibition of both Chk1/Chk2 with AZD7762 induces cell death and significantly delays disease progression of transplanted lymphoma cells in vivo. DNA damage recruits PARP family members to sites of DNA breaks that, in turn, facilitate the induction of DNA repair. Strikingly, combining Chk2 and PARP inhibition elicits a synergistic lethal response in the context of Myc overexpression. Our data indicates that only certain types of chemotherapy would give rise to a synergistic lethal response in combination with specific Chk2 inhibitors, which will be important if Chk2 inhibitors enter the clinic.


Asunto(s)
Apoptosis/genética , Daño del ADN/genética , Linfoma/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Proto-Oncogénicas c-myc/metabolismo , Animales , Línea Celular , Quinasa de Punto de Control 2 , Técnica del Anticuerpo Fluorescente , Humanos , Lentivirus , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Células 3T3 NIH , Poli(ADP-Ribosa) Polimerasa-1 , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Retroviridae , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Supervivencia , Tiofenos/farmacología , Transfección , Urea/análogos & derivados , Urea/farmacología
3.
Oncotarget ; 2(6): 448-60, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21646687

RESUMEN

The Pim kinases are weak oncogenes. However, when co-expressed with a strong oncogene, such as c-Myc, Pim kinases potentiate the oncogenic effect resulting in an acceleration of tumorigenesis. In this study we show that the least studied Pim kinase, Pim-3, is encoded by a gene directly regulated by c-Myc via binding to one of the conserved E-boxes within the Pim3 gene. Accordingly, lymphomas arising in Myc-transgenic mice and Burkitt lymphoma cell lines exhibit elevated levels of Pim-3. Interestingly, inhibition of Pim kinases by a novel pan-Pim kinase inhibitor, Pimi, in Myc-induced lymphoma results in cell death that appears independent of caspases. The data indicate that Pim kinase inhibition could be a viable treatment strategy in certain human lymphomas that rely on Pim-3 kinase expression.


Asunto(s)
Transformación Celular Neoplásica/genética , Linfoma de Células B/genética , Linfoma de Células B/patología , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Proto-Oncogénicas c-myc/fisiología , Proteínas Proto-Oncogénicas c-pim-1/fisiología , Proteínas Proto-Oncogénicas/fisiología , Animales , Caspasa 3/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Transformación Celular Neoplásica/efectos de los fármacos , Transformación Celular Neoplásica/patología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Ratones Transgénicos , Células 3T3 NIH , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-pim-1/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-pim-1/genética , Proteínas Proto-Oncogénicas c-pim-1/metabolismo
4.
Blood ; 113(18): 4281-8, 2009 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-19179467

RESUMEN

Decitabine (also referred to as 5-aza-2'-deoxycytidine) is a drug that has recently been approved by the Food and Drug Administration (FDA) for the treatment of myelodysplastic syndrome (MDS). The mechanism of action is believed to be the blocking of DNA methylation and thereby reactivating silenced genes involved in harnessing MDS. When analyzing reactivation of genes involved in Burkitt lymphoma (BL), we discovered that decitabine also sensitizes tumor cells by inducing DNA damage. This sensitization is grossly augmented by the MYC oncogene, which is overexpressed in BL, and occurs in cells lacking a functional p53 tumor suppressor pathway. In p53-deficient BL cells and p53(-/-) mouse embryo fibroblasts, Myc overrides a transient G2-block exerted by decitabine via activation of Chk1. This triggers aneuploidy and cell death that correlates with, but can occur in the absence of, Epstein-Barr virus (EBV) reactivation, caspase activation, and/or expression of the BH3-only protein Puma. In vivo modeling of Myc-induced lymphoma suggests that decitabine constitutes a potential new drug against lymphoma that would selectively sensitize tumor cells but spare normal tissue.


Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , Azacitidina/análogos & derivados , Linfoma de Burkitt/patología , Daño del ADN , Metilasas de Modificación del ADN/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-myc/fisiología , Proteína p53 Supresora de Tumor/metabolismo , Aneuploidia , Animales , Apoptosis/efectos de los fármacos , Azacitidina/farmacología , Western Blotting , Linfoma de Burkitt/metabolismo , Linfoma de Burkitt/virología , Ciclo Celular , Metilación de ADN , ADN de Neoplasias/efectos de los fármacos , Decitabina , Embrión de Mamíferos , Infecciones por Virus de Epstein-Barr/genética , Infecciones por Virus de Epstein-Barr/patología , Infecciones por Virus de Epstein-Barr/virología , Fibroblastos/citología , Fibroblastos/metabolismo , Herpesvirus Humano 4/aislamiento & purificación , Humanos , Riñón/citología , Riñón/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Mutación/genética
5.
J Virol ; 80(22): 11200-8, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16956945

RESUMEN

Epstein-Barr virus (EBV) nuclear antigen 3C (EBNA-3C) is essential for EBV-mediated immortalization of human B lymphocytes and regulates both the cell cycle and transcription. Transient reporter gene assays have implicated a pivotal role for EBNA-3C in the regulation of transcription of the majority of latency-associated genes expressed during the EBV growth program, including the viral oncoprotein LMP-1. To examine the regulation of latency gene expression by EBNA-3C, we generated an EBV-positive cell line that inducibly expresses EBNA-3C. This cell line allowed us to examine expression from the endogenous latency gene promoters in the context of an actual latent infection and the presence of other EBNA proteins, in particular EBNA-2, which is presumed to coregulate transcription with EBNA-3C. EBNA-3C induced the expression of both LMP-1 and LMP-2B mRNAs from the bidirectional LMP-1/LMP-2B promoter. In contrast, no effect was seen on expression from the common EBNA promoter Cp, which is responsive to EBNA-3C in reporter assays. Activation of LMP expression was not the consequence of increases in EBNA-2, PU.1 or Spi-B transcription factors, all of which are believed to be critical for activation of LMP-1. Chromatin immunoprecipitation assays furthermore indicated that EBNA-3C is present at the bidirectional LMP-1/LMP-2B promoter. These results indicate that EBNA-3C directly activates the expression of LMP-1 and LMP-2B but is unlikely to significantly regulate EBNA expression via Cp under normal growth conditions.


Asunto(s)
Antígenos Virales/metabolismo , Regulación Viral de la Expresión Génica , Herpesvirus Humano 4/fisiología , Regiones Promotoras Genéticas , Proteínas de la Matriz Viral/genética , Antígenos Virales/fisiología , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , ADN Viral/metabolismo , Proteínas de Unión al ADN/análisis , Electroforesis en Gel de Poliacrilamida , Antígenos Nucleares del Virus de Epstein-Barr/análisis , Humanos , Immunoblotting , Proteínas Proto-Oncogénicas/análisis , ARN Viral/análisis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transactivadores/análisis , Factores de Transcripción/análisis , Proteínas de la Matriz Viral/biosíntesis , Proteínas Virales/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA