Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biomed Opt ; 28(12): 126007, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38155703

RESUMEN

Significance: Rapid advances in medical imaging technology, particularly the development of optical systems with non-linear imaging modalities, are boosting deep tissue imaging. The development of reliable standards and phantoms is critical for validation and optimization of these cutting-edge imaging techniques. Aim: We aim to design and fabricate flexible, multi-layered hydrogel-based optical standards and evaluate advanced optical imaging techniques at depth. Approach: Standards were made using a robust double-network hydrogel matrix consisting of agarose and polyacrylamide. The materials generated ranged from single layers to more complex constructs consisting of up to seven layers, with modality-specific markers embedded between the layers. Results: These standards proved useful in the determination of the axial scaling factor for light microscopy and allowed for depth evaluation for different imaging modalities (conventional one-photon excitation fluorescence imaging, two-photon excitation fluorescence imaging, second harmonic generation imaging, and coherent anti-Stokes Raman scattering) achieving actual depths of 1550, 1550, 1240, and 1240 µm, respectively. Once fabricated, the phantoms were found to be stable for many months. Conclusions: The ability to image at depth, the phantom's robustness and flexible layered structure, and the ready incorporation of "optical markers" make these ideal depth standards for the validation of a variety of imaging modalities.


Asunto(s)
Hidrogeles , Dispositivos Ópticos , Fantasmas de Imagen , Microscopía/métodos , Imagen Óptica
2.
Front Chem ; 10: 921354, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35815206

RESUMEN

The way in which photons travel through biological tissues and subsequently become scattered or absorbed is a key limitation for traditional optical medical imaging techniques using visible light. In contrast, near-infrared wavelengths, in particular those above 1000 nm, penetrate deeper in tissues and undergo less scattering and cause less photo-damage, which describes the so-called "second biological transparency window". Unfortunately, current dyes and imaging probes have severely limited absorption profiles at such long wavelengths, and molecular engineering of novel NIR-II dyes can be a tedious and unpredictable process, which limits access to this optical window and impedes further developments. Two-photon (2P) absorption not only provides convenient access to this window by doubling the absorption wavelength of dyes, but also increases the possible resolution. This review aims to provide an update on the available 2P instrumentation and 2P luminescent materials available for optical imaging in the NIR-II window.

3.
ACS Omega ; 7(11): 9785-9795, 2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35350322

RESUMEN

Flexoelectricity may have an important impact on the switching properties of nematic and cholesteric liquid crystals due to the linear coupling between the flexoelectric polarization of the liquid crystal and the applied electric field. This coupling is the origin of the extraordinary electro-optic effect in cholesterics aligned in the uniform lying helix texture, resulting in fast switching and field control of both rise and fall times. Therefore, the flexoelectric properties of the liquid crystals have become an important issue when designing and synthesizing liquid crystal materials and/or preparing their mixtures with appropriate flexoelectric compounds (dopants). Here, we report on the flexoelectric polarization of a highly polar nematic liquid crystal host enhanced by doping it with two newly synthesized dopants SK 1-6 and SK 1-8, possessing a hockey stick molecular shape, and comparing their doping effect with the one of the dimeric dopants CB7CB possessing a symmetric bend molecular shape. All dopants were dissolved in small concentration (5 wt %) in the nematic host so that the linear approximation of the dependence of the difference between splay e s and bend e b flexoelectric constants, that is, (e s - e b), on the concentration of the dopant in the host material can be applied. In this way, (e s - e b) was estimated for the hockey stick dopants SK 1-6 and SK 1-8 to be 0.182 and 0.204 nC/m, respectively. The obtained flexoelectric polarization of these dopants is among the highest reported in the literature so far.

4.
Proc Natl Acad Sci U S A ; 116(22): 10698-10704, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31088967

RESUMEN

We synthesized the liquid crystal dimer and trimer members of a series of flexible linear oligomers and characterized their microscopic and nanoscopic properties using resonant soft X-ray scattering and a number of other experimental techniques. On the microscopic scale, the twist-bend phases of the dimer and trimer appear essentially identical. However, while the liquid crystal dimer exhibits a temperature-dependent variation of its twist-bend helical pitch varying from 100 to 170 Å on heating, the trimer exhibits an essentially temperature-independent pitch of 66 Å, significantly shorter than those reported for other twist-bend forming materials in the literature. We attribute this to a specific combination of intrinsic conformational bend of the trimer molecules and a sterically favorable intercalation of the trimers over a commensurate fraction (two-thirds) of the molecular length. We develop a geometric model of the twist-bend phase for these materials with the molecules arranging into helical chain structures, and we fully determine their respective geometric parameters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA