Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Int ; 190: 108859, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38970982

RESUMEN

Metal nanoparticles offer promising prospects in agriculture, enhancing plant growth and ensuring food security. Silver, gold, copper, and zinc nanoparticles possess unique properties making them attractive for plant applications. Understanding molecular interactions between metal nanoparticles and plants is crucial for unlocking their potential to boost crop productivity and sustainability. This review explores metal nanoparticles in agriculture, emphasizing the need to understand these interactions. By elucidating mechanisms, it highlights the potential for enhancing crop productivity, stress tolerance, and nutrient-use efficiency, contributing to sustainable agriculture and food security. Quantifying benefits and risks reveal significant advantages. Metal nanoparticles enhance crop productivity by 20% on average and reduce disease incidence by up to 50% when used as antimicrobial agents. They also reduce nutrient leaching by 30% and enhance soil carbon sequestration by 15%, but concerns about toxicity, adverse effects on non-target organisms, and nanoparticle accumulation in the food chain must be addressed. Metal nanoparticles influence cellular processes including sensing, signaling, transcription, translation, and post-translational modifications. They act as signaling molecules, activate stress-responsive genes, enhance defense mechanisms, and improve nutrient uptake. The review explores their catalytic role in nutrient management, disease control, precision agriculture, nano-fertilizers, and nano-remediation. A bibliometric analysis offers insights into the current research landscape, highlighting trends, gaps, and future directions. In conclusion, metal nanoparticles hold potential for revolutionizing agriculture, enhancing productivity, mitigating environmental stressors, and promoting sustainability. Addressing risks and gaps is crucial for their safe integration into agricultural practices.


Asunto(s)
Agricultura , Productos Agrícolas , Nanopartículas del Metal , Nanopartículas del Metal/química , Agricultura/métodos , Plantas/metabolismo
2.
Sci Rep ; 14(1): 15946, 2024 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987397

RESUMEN

Ghaf, a resilient tree in arid environments, plays a critical role in ecological restoration, desertification mitigation, and cultural heritage preservation. However, the seeds' inherent challenges, notably their hard outer coating restricting germination, emphasize the pressing need for innovative strategies. This work aimed to investigate the optimization of Ghaf seed germination process through seed priming with ZnO nanoparticles treatment (duration (t), concentration (c), temperature (T), and agitation (a), employing the Taguchi method for efficient experimental design. Furthermore, the study includes Analysis of Variance (ANOVA), analysis for the regression model to assess the significance of predictor variables and their interactions, thereby strengthening the statistical validity of our optimization approach. Notably, it revealed that concentration is a pivotal influencer in optimization of Ghaf seed germination. The results showed that the concentration of ZnO nanoparticles has no linear relation with any other parameters. To verify the outcomes, validation tests were performed utilizing the predicted optimal parameters. The observed low error ratio, falling within the range of 1 to 6%, confirmed the success of the Taguchi methodology in identifying optimal levels of the factors chosen. Significantly, ZnO-primed seeds showcased a remarkable enhancement in Ghaf seed germination, increasing from 15 to 88%. This study introduces a novel approach utilizing ZnO nanoparticle treatment optimized through the Taguchi method, significantly enhancing seed germination rates of Ghaf seeds and offering a promising avenue for sustainable agricultural practices in arid environments.


Asunto(s)
Germinación , Semillas , Óxido de Zinc , Germinación/efectos de los fármacos , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Nanopartículas , Nanopartículas del Metal/química , Temperatura , Árboles/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA