Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Science ; 384(6691): 30-31, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38574157

RESUMEN

Bronchoconstriction causes epithelial cell extrusion that promotes airway inflammation.


Asunto(s)
Asma , Broncoconstricción , Humanos , Sistema Respiratorio , Inflamación , Células Epiteliales
2.
Biophys Rev (Melville) ; 4(4): 041304, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38156333

RESUMEN

Textbook descriptions of elasticity, viscosity, and viscoelasticity fail to account for certain mechanical behaviors that typify soft living matter. Here, we consider three examples. First, strong empirical evidence suggests that within lung parenchymal tissues, the frictional stresses expressed at the microscale are fundamentally not of viscous origin. Second, the cytoskeleton (CSK) of the airway smooth muscle cell, as well as that of all eukaryotic cells, is more solid-like than fluid-like, yet its elastic modulus is softer than the softest of soft rubbers by a factor of 104-105. Moreover, the eukaryotic CSK expresses power law rheology, innate malleability, and fluidization when sheared. For these reasons, taken together, the CSK of the living eukaryotic cell is reminiscent of the class of materials called soft glasses, thus likening it to inert materials such as clays, pastes slurries, emulsions, and foams. Third, the cellular collective comprising a confluent epithelial layer can become solid-like and jammed, fluid-like and unjammed, or something in between. Esoteric though each may seem, these discoveries are consequential insofar as they impact our understanding of bronchospasm and wound healing as well as cancer cell invasion and embryonic development. Moreover, there are reasons to suspect that certain of these phenomena first arose in the early protist as a result of evolutionary pressures exerted by the primordial microenvironment. We have hypothesized, further, that each then became passed down virtually unchanged to the present day as a conserved core process. These topics are addressed here not only because they are interesting but also because they track the journey of one laboratory along a path less traveled by.

3.
ArXiv ; 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37292460

RESUMEN

The transition of an epithelial layer from a stationary, quiescent state to a highly migratory, dynamic state is required for wound healing, development, and regeneration. This transition, known as the unjamming transition (UJT), is responsible for epithelial fluidization and collective migration. Previous theoretical models have primarily focused on the UJT in flat epithelial layers, neglecting the effects of strong surface curvature that is characteristic of epithelial tissues in vivo. In this study, we investigate the role of surface curvature on tissue plasticity and cellular migration using a vertex model embedded on a spherical surface. Our findings reveal that increasing curvature promotes epithelial unjamming by reducing the energy barriers to cellular rearrangements. Higher curvature favors cell intercalation, mobility, and self-diffusivity, resulting in epithelial structures that are malleable and migratory when small, but become more rigid and stationary as they grow. As such, curvature-induced unjamming emerges as a novel mechanism for epithelial layer fluidization. Our quantitative model proposes the existence of a new, extended, phase diagram wherein local cell shape, cell propulsion, and tissue geometry combine to determine the epithelial migratory phenotype.

4.
Gastroenterology ; 164(7): 1137-1151.e15, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36871599

RESUMEN

BACKGROUND & AIMS: Fibrosis and tissue stiffening are hallmarks of inflammatory bowel disease (IBD). We have hypothesized that the increased stiffness directly contributes to the dysregulation of the epithelial cell homeostasis in IBD. Here, we aim to determine the impact of tissue stiffening on the fate and function of the intestinal stem cells (ISCs). METHODS: We developed a long-term culture system consisting of 2.5-dimensional intestinal organoids grown on a hydrogel matrix with tunable stiffness. Single-cell RNA sequencing provided stiffness-regulated transcriptional signatures of the ISCs and their differentiated progeny. YAP-knockout and YAP-overexpression mice were used to manipulate YAP expression. In addition, we analyzed colon samples from murine colitis models and human IBD samples to assess the impact of stiffness on ISCs in vivo. RESULTS: We demonstrated that increasing the stiffness potently reduced the population of LGR5+ ISCs and KI-67+-proliferating cells. Conversely, cells expressing the stem cell marker, olfactomedin-4, became dominant in the crypt-like compartments and pervaded the villus-like regions. Concomitantly, stiffening prompted the ISCs to preferentially differentiate toward goblet cells. Mechanistically, stiffening increased the expression of cytosolic YAP, driving the extension of olfactomedin-4+ cells into the villus-like regions, while it induced the nuclear translocation of YAP, leading to preferential differentiation of ISCs toward goblet cells. Furthermore, analysis of colon samples from murine colitis models and patients with IBD demonstrated cellular and molecular remodeling reminiscent of those observed in vitro. CONCLUSIONS: Collectively, our findings highlight that matrix stiffness potently regulates the stemness of ISCs and their differentiation trajectory, supporting the hypothesis that fibrosis-induced gut stiffening plays a direct role in epithelial remodeling in IBD.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Humanos , Ratones , Animales , Células Caliciformes , Células Madre/fisiología , Mucosa Intestinal/metabolismo , Diferenciación Celular/genética , Enfermedades Inflamatorias del Intestino/metabolismo , Colitis/metabolismo
5.
Nat Commun ; 14(1): 47, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36599824

RESUMEN

Obesity increases asthma prevalence and severity. However, the underlying mechanisms are poorly understood, and consequently, therapeutic options for asthma patients with obesity remain limited. Here we report that cholecystokinin-a metabolic hormone best known for its role in signaling satiation and fat metabolism-is increased in the lungs of obese mice and that pharmacological blockade of cholecystokinin A receptor signaling reduces obesity-associated airway hyperresponsiveness. Activation of cholecystokinin A receptor by the hormone induces contraction of airway smooth muscle cells. In vivo, cholecystokinin level is elevated in the lungs of both genetically and diet-induced obese mice. Importantly, intranasal administration of cholecystokinin A receptor antagonists (proglumide and devazepide) suppresses the airway hyperresponsiveness in the obese mice. Together, our results reveal an unexpected role for cholecystokinin in the lung and support the repurposing of cholecystokinin A receptor antagonists as a potential therapy for asthma patients with obesity.


Asunto(s)
Asma , Hipersensibilidad Respiratoria , Animales , Ratones , Asma/tratamiento farmacológico , Asma/metabolismo , Colecistoquinina/metabolismo , Pulmón/metabolismo , Ratones Obesos , Obesidad/complicaciones , Obesidad/metabolismo , Receptor de Colecistoquinina A/genética , Receptor de Colecistoquinina A/metabolismo , Hipersensibilidad Respiratoria/tratamiento farmacológico , Hipersensibilidad Respiratoria/metabolismo
6.
Proc Natl Acad Sci U S A ; 119(17): e2121816119, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35439057

RESUMEN

The ability of a cell to regulate its mechanical properties is central to its function. Emerging evidence suggests that interactions between the cell nucleus and cytoskeleton influence cell mechanics through poorly understood mechanisms. Here we conduct quantitative confocal imaging to show that the loss of A-type lamins tends to increase nuclear and cellular volume while the loss of B-type lamins behaves in the opposite manner. We use fluorescence recovery after photobleaching, atomic force microscopy, optical tweezer microrheology, and traction force microscopy to demonstrate that A-type lamins engage with both F-actin and vimentin intermediate filaments (VIFs) through the linker of nucleoskeleton and cytoskeleton (LINC) complexes to modulate cortical and cytoplasmic stiffness as well as cellular contractility in mouse embryonic fibroblasts (MEFs). In contrast, we show that B-type lamins predominantly interact with VIFs through LINC complexes to regulate cytoplasmic stiffness and contractility. We then propose a physical model mediated by the lamin­LINC complex that explains these distinct mechanical phenotypes (mechanophenotypes). To verify this model, we use dominant negative constructs and RNA interference to disrupt the LINC complexes that facilitate the interaction of the nucleus with the F-actin and VIF cytoskeletons and show that the loss of these elements results in mechanophenotypes like those observed in MEFs that lack A- or B-type lamin isoforms. Finally, we demonstrate that the loss of each lamin isoform softens the cell nucleus and enhances constricted cell migration but in turn increases migration-induced DNA damage. Together, our findings uncover distinctive roles for each of the four major lamin isoforms in maintaining nucleocytoskeletal interactions and cellular mechanics.


Asunto(s)
Fibroblastos , Lámina Nuclear , Animales , Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Fibroblastos/metabolismo , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Lamina Tipo B/genética , Lamina Tipo B/metabolismo , Ratones , Lámina Nuclear/metabolismo , Matriz Nuclear/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
7.
Soft Matter ; 18(12): 2346-2353, 2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35244652

RESUMEN

A cardinal feature common to embryonic development and tissue reorganization, as well as to wound healing and cancer cell invasion, is collective cellular migration. During collective migratory events the phenomena of cell jamming and unjamming are increasingly recognized, and underlying mechanical, genomic, transcriptional, and signaling events are increasingly coming to light. In this brief perspective I propose a synthesis that brings together in a new way two key concepts. On the one hand, it has been suggested that the unjammed phase of the cellular collective evolved under a selective pressure favoring fluid-like migratory dynamics as would be required so as to accommodate episodes of tissue evolution, development, plasticity, and repair. Being dynamic, such an unjammed migratory phase is expected to be energetically expensive compared with the jammed non-migratory phase, which is presumed to have evolved under a selective pressure favoring a solid-like homeostatic regime that, by comparison, is energetically economical and mechanically stable. On the other hand, well before the discovery of cell jamming and unjamming Kauffman proposed the general biological principle that living systems exist in a solid regime near the edge of chaos, and that natural selection achieves and sustains such a poised state. Here I propose that, in certain systems at least, this poised solid-like state as predicted in the abstract by Kauffman is realized in the particular by the jammed regime just at the brink of unjamming.


Asunto(s)
Neoplasias , Movimiento Celular , Humanos
8.
Proc Natl Acad Sci U S A ; 119(10): e2115217119, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35235449

RESUMEN

The cytoskeleton of eukaryotic cells is primarily composed of networks of filamentous proteins, F-actin, microtubules, and intermediate filaments. Interactions among the cytoskeletal components are important in determining cell structure and in regulating cell functions. For example, F-actin and microtubules work together to control cell shape and polarity, while the subcellular organization and transport of vimentin intermediate filament (VIF) networks depend on their interactions with microtubules. However, it is generally thought that F-actin and VIFs form two coexisting but separate networks that are independent due to observed differences in their spatial distribution and functions. In this paper, we present a closer investigation of both the structural and functional interplay between the F-actin and VIF cytoskeletal networks. We characterize the structure of VIFs and F-actin networks within the cell cortex using structured illumination microscopy and cryo-electron tomography. We find that VIFs and F-actin form an interpenetrating network (IPN) with interactions at multiple length scales, and VIFs are integral components of F-actin stress fibers. From measurements of recovery of cell contractility after transient stretching, we find that the IPN structure results in enhanced contractile forces and contributes to cell resilience. Studies of reconstituted networks and dynamic measurements in cells suggest direct and specific associations between VIFs and F-actin. From these results, we conclude that VIFs and F-actin work synergistically, both in their structure and in their function. These results profoundly alter our understanding of the contributions of the components of the cytoskeleton, particularly the interactions between intermediate filaments and F-actin.


Asunto(s)
Citoplasma/metabolismo , Filamentos Intermedios/metabolismo , Vimentina/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/química , Actinas/metabolismo , Animales , Biopolímeros/metabolismo , Células Cultivadas , Tomografía con Microscopio Electrónico/métodos , Filamentos Intermedios/química , Ratones , Vimentina/química
9.
Cells ; 11(2)2022 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-35053372

RESUMEN

Aberrant remodeling of the asthmatic airway is not well understood but is thought to be attributable in part to mechanical compression of airway epithelial cells. Here, we examine compression-induced expression and secretion of the extracellular matrix protein tenascin C (TNC) from well-differentiated primary human bronchial epithelial (HBE) cells grown in an air-liquid interface culture. We measured TNC mRNA expression using RT-qPCR and secreted TNC protein using Western blotting and ELISA. To determine intracellular signaling pathways, we used specific inhibitors for either ERK or TGF-ß receptor, and to assess the release of extracellular vesicles (EVs) we used a commercially available kit and Western blotting. At baseline, secreted TNC protein was significantly higher in asthmatic compared to non-asthmatic cells. In response to mechanical compression, both TNC mRNA expression and secreted TNC protein was significantly increased in both non-asthmatic and asthmatic cells. TNC production depended on both the ERK and TGF-ß receptor pathways. Moreover, mechanically compressed HBE cells released EVs that contain TNC. These data reveal a novel mechanism by which mechanical compression, as is caused by bronchospasm, is sufficient to induce the production of ECM protein in the airway and potentially contribute to airway remodeling.


Asunto(s)
Fuerza Compresiva , Células Epiteliales/metabolismo , Vesículas Extracelulares/metabolismo , Pulmón/citología , Estrés Mecánico , Tenascina/metabolismo , Humanos , Sistema de Señalización de MAP Quinasas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Tenascina/genética
10.
iScience ; 24(11): 103252, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34755092

RESUMEN

It is well established that the early malignant tumor invades surrounding extracellular matrix (ECM) in a manner that depends upon material properties of constituent cells, surrounding ECM, and their interactions. Recent studies have established the capacity of the invading tumor spheroids to evolve into coexistent solid-like, fluid-like, and gas-like phases. Using breast cancer cell lines invading into engineered ECM, here we show that the spheroid interior develops spatial and temporal heterogeneities in material phase which, depending upon cell type and matrix density, ultimately result in a variety of phase separation patterns at the invasive front. Using a computational approach, we further show that these patterns are captured by a novel jamming phase diagram. We suggest that non-equilibrium phase separation based upon jamming and unjamming transitions may provide a unifying physical picture to describe cellular migratory dynamics within, and invasion from, a tumor.

11.
Sci Rep ; 11(1): 16279, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34381087

RESUMEN

The migration of tumorigenic cells is a critical step for metastatic breast cancer progression. Although the role of the extracellular matrix in breast cancer cell migration has been extensively described, the effect of osmotic stress on the migration of tumor breast cohorts remains unclear. Most of our understanding on the effect of osmotic stresses on cell migration comes from studies at the level of the single cell in isolation and does not take cell-cell interactions into account. Here, we study the impact of moderate osmotic stress on the migration of cell clusters composed of either non-tumorigenic or tumorigenic cells. We observe a decrease in migration distance and speed for non-tumorigenic cells but not for tumorigenic ones. To explain these differences, we investigate how osmotic stress impacts the mechanical properties of cell clusters and affects their volumes. Our findings show that tumorigenic mesenchymal cells are less sensitive to osmotic stress than non-tumorigenic cells and suggest that this difference is associated with a lower expression of E-cadherin. Using EGTA treatments, we confirm that the establishment of cell-cell adhesive interactions is a key component of the behavior of cell clusters in response to osmotic stress. This study provides evidence on the low sensitivity of mesenchymal tumorigenic clusters to moderate osmotic stress and highlights the importance of cadherin-based junctions in the response to osmotic stress.


Asunto(s)
Antígenos CD/metabolismo , Cadherinas/metabolismo , Carcinogénesis/metabolismo , Células Madre Mesenquimatosas/metabolismo , Presión Osmótica/fisiología , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Carcinogénesis/patología , Comunicación Celular/fisiología , Línea Celular , Línea Celular Tumoral , Movimiento Celular/fisiología , Perros , Transición Epitelial-Mesenquimal/fisiología , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Femenino , Humanos , Células MCF-7 , Células de Riñón Canino Madin Darby , Células Madre Mesenquimatosas/patología
12.
Cells Dev ; 168: 203727, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34363993

RESUMEN

The last decade has seen a surge of evidence supporting the existence of the transition of the multicellular tissue from a collective material phase that is regarded as being jammed to a collective material phase that is regarded as being unjammed. The jammed phase is solid-like and effectively 'frozen', and therefore is associated with tissue homeostasis, rigidity, and mechanical stability. The unjammed phase, by contrast, is fluid-like and effectively 'melted', and therefore is associated with mechanical fluidity, plasticity and malleability that are required in dynamic multicellular processes that sculpt organ microstructure. Such multicellular sculpturing, for example, occurs during embryogenesis, growth and remodeling. Although unjamming and jamming events in the multicellular collective are reminiscent of those that occur in the inert granular collective, such as grain in a hopper that can flow or clog, the analogy is instructive but limited, and the implications for cell biology remain unclear. Here we ask, are the cellular jamming transition and its inverse --the unjamming transition-- mere epiphenomena? That is, are they dispensable downstream events that accompany but neither cause nor quench these core multicellular processes? Drawing from selected examples in developmental biology, here we suggest the hypothesis that, to the contrary, the graded departure from a jammed phase enables controlled degrees of malleability as might be required in developmental dynamics. We further suggest that the coordinated approach to a jammed phase progressively slows those dynamics and ultimately enables long-term mechanical stability as might be required in the mature homeostatic multicellular tissue.

13.
Sci Adv ; 7(30)2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34301595

RESUMEN

Epithelial tissue can transition from a jammed, solid-like, quiescent phase to an unjammed, fluid-like, migratory phase, but the underlying molecular events of the unjamming transition (UJT) remain largely unexplored. Using primary human bronchial epithelial cells (HBECs) and one well-defined trigger of the UJT, compression mimicking the mechanical effects of bronchoconstriction, here, we combine RNA sequencing data with protein-protein interaction networks to provide the first genome-wide analysis of the UJT. Our results show that compression induces an early transcriptional activation of the membrane and actomyosin network and a delayed activation of the extracellular matrix (ECM) and cell-matrix networks. This response is associated with a signaling cascade that promotes actin polymerization and cellular motility through the coordinated interplay of downstream pathways including ERK, JNK, integrin signaling, and energy metabolism. Moreover, in nonasthmatic versus asthmatic HBECs, common genomic patterns associated with ECM remodeling suggest a molecular connection between airway remodeling, bronchoconstriction, and the UJT.


Asunto(s)
Asma , Células Epiteliales , Asma/metabolismo , Movimiento Celular/genética , Células Epiteliales/metabolismo , Epitelio/metabolismo , Genómica , Humanos
14.
Chest ; 159(6): 2356-2365, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33539839

RESUMEN

BACKGROUND: Current techniques for measuring absolute lung volumes rely on bulky and expensive equipment and are complicated to use for the operator and the patient. A novel method for measurement of absolute lung volumes, the MiniBox method, is presented. RESEARCH QUESTION: Across a population of patients and healthy participants, do values for total lung capacity (TLC) determined by the novel compact device (MiniBox, PulmOne Advanced Medical Devices, Ltd.) compare favorably with measurements determined by traditional whole body plethysmography? STUDY DESIGN AND METHODS: A total of 266 participants (130 men) and respiratory patients were recruited from five global centers (three in Europe and two in the United States). The study population comprised individuals with obstructive (n = 197) and restrictive (n = 33) disorders as well as healthy participants (n = 36). TLC measured by conventional plethysmography (TLCPleth) was compared with TLC measured by the MiniBox (TLCMB). RESULTS: TLC values ranged between 2.7 and 10.9 L. The normalized root mean square difference (NSD) between TLCPleth and TLCMB was 7.0% in healthy participants. In obstructed patients, the NSD was 7.9% in mild obstruction and 9.1% in severe obstruction. In restricted patients, the NSD was 7.8% in mild restriction and 13.9% in moderate and severe restriction. No significant differences were found between TLC values obtained by the two measurement techniques. Also no significant differences were found in results obtained among the five centers. INTERPRETATION: TLC as measured by the novel MiniBox system is not significantly different from TLC measured by conventional whole body plethysmography, thus validating the MiniBox method as a reliable method to measure absolute lung volumes.


Asunto(s)
Mediciones del Volumen Pulmonar/métodos , Pletismografía/métodos , Capacidad Pulmonar Total/fisiología , Adulto , Anciano , Europa (Continente) , Femenino , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Estados Unidos
15.
Nat Commun ; 11(1): 5053, 2020 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-33028821

RESUMEN

The epithelial-to-mesenchymal transition (EMT) and the unjamming transition (UJT) each comprises a gateway to cellular migration, plasticity and remodeling, but the extent to which these core programs are distinct, overlapping, or identical has remained undefined. Here, we triggered partial EMT (pEMT) or UJT in differentiated primary human bronchial epithelial cells. After triggering UJT, cell-cell junctions, apico-basal polarity, and barrier function remain intact, cells elongate and align into cooperative migratory packs, and mesenchymal markers of EMT remain unapparent. After triggering pEMT these and other metrics of UJT versus pEMT diverge. A computational model attributes effects of pEMT mainly to diminished junctional tension but attributes those of UJT mainly to augmented cellular propulsion. Through the actions of UJT and pEMT working independently, sequentially, or interactively, those tissues that are subject to development, injury, or disease become endowed with rich mechanisms for cellular migration, plasticity, self-repair, and regeneration.


Asunto(s)
Movimiento Celular/fisiología , Células Epiteliales/fisiología , Transición Epitelial-Mesenquimal/fisiología , Regeneración , Mucosa Respiratoria/fisiología , Bronquios/citología , Bronquios/fisiología , Plasticidad de la Célula/fisiología , Células Cultivadas , Humanos , Cultivo Primario de Células , Mucosa Respiratoria/citología
16.
Sci Rep ; 10(1): 18302, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33110128

RESUMEN

In development of an embryo, healing of a wound, or progression of a carcinoma, a requisite event is collective epithelial cellular migration. For example, cells at the advancing front of a wound edge tend to migrate collectively, elongate substantially, and exert tractions more forcefully compared with cells many ranks behind. With regards to energy metabolism, striking spatial gradients have recently been reported in the wounded epithelium, as well as in the tumor, but within the wounded cell layer little is known about the link between mechanical events and underlying energy metabolism. Using the advancing confluent monolayer of MDCKII cells as a model system, here we report at single cell resolution the evolving spatiotemporal fields of cell migration speeds, cell shapes, and traction forces measured simultaneously with fields of multiple indices of cellular energy metabolism. Compared with the epithelial layer that is unwounded, which is non-migratory, solid-like and jammed, the leading edge of the advancing cell layer is shown to become progressively more migratory, fluid-like, and unjammed. In doing so the cytoplasmic redox ratio becomes progressively smaller, the NADH lifetime becomes progressively shorter, and the mitochondrial membrane potential and glucose uptake become progressively larger. These observations indicate that a metabolic shift toward glycolysis accompanies collective cellular migration but show, further, that this shift occurs throughout the cell layer, even in regions where associated changes in cell shapes, traction forces, and migration velocities have yet to penetrate. In characterizing the wound healing process these morphological, mechanical, and metabolic observations, taken on a cell-by-cell basis, comprise the most comprehensive set of biophysical data yet reported. Together, these data suggest the novel hypothesis that the unjammed phase evolved to accommodate fluid-like migratory dynamics during episodes of tissue wound healing, development, and plasticity, but is more energetically expensive compared with the jammed phase, which evolved to maintain a solid-like non-migratory state that is more energetically economical.


Asunto(s)
Metabolismo Energético , Epitelio/metabolismo , Glucólisis , Animales , Movimiento Celular , Perros , Glucosa/metabolismo , Células de Riñón Canino Madin Darby/metabolismo , Potencial de la Membrana Mitocondrial , NAD/metabolismo , Oxidación-Reducción
17.
Nat Phys ; 16(1): 101-108, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32905405

RESUMEN

Sculpting of structure and function of three-dimensional multicellular tissues depend critically on the spatial and temporal coordination of cellular physical properties, yet the organizational principles that govern these events, and their disruption in disease, remain poorly understood. Using a multicellular mammary cancer organoid model, here we map in three dimensions the spatial and temporal evolution of positions, motions, and physical characteristics of individual cells. Compared with cells in the organoid core, cells at the organoid periphery and the invasive front are found to be systematically softer, larger and more dynamic. These mechanical changes are shown to arise from supracellular fluid flow through gap junctions, suppression of which delays transition to an invasive phenotype. Together, these findings highlight the role of spatiotemporal coordination of cellular physical properties in tissue organization and disease progression.

18.
APL Bioeng ; 4(3): 036104, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32666015

RESUMEN

Polyacrylamide hydrogels are commonly used in cell biology, notably to cultivate cells on soft surfaces. Polyacrylamide gels are purely elastic and well adapted to cell culture as they are inert and can be conjugated with adhesion proteins. Here, we report a method to make viscoelastic polyacrylamide gels with mechanical properties more closely resembling biological tissues and suitable for cell culture in vitro. We demonstrate that these gels can be used for traction force microscopy experiments. We also show that multiple cell types respond to the viscoelasticity of their substrate and that viscous dissipation has an influence on cell spreading, contractility, and motility. This new material provides new opportunities for investigating how normal or malignant cells sense and respond to viscous dissipation within the extra-cellular matrix.

19.
Phys Rev E ; 101(6-1): 062405, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32688543

RESUMEN

The relationship between velocities, tractions, and intercellular stresses in the migrating epithelial monolayer are currently unknown. Ten years ago, a method known as monolayer stress microscopy (MSM) was suggested from which intercellular stresses could be computed for a given traction field. The core assumption of MSM is that intercellular stresses within the monolayer obey a linear and passive constitutive law. Examples of these include a Hookean solid (an elastic sheet) or a Newtonian fluid (thin fluid film), which imply a specific relation between the displacements or velocities and the tractions. Due to the lack of independently measured intercellular stresses, a direct validation of the 2D stresses predicted by a linear passive MSM model is presently not possible. An alternative approach, which we give here and denote as the Stokes method, is based on simultaneous measurements of the monolayer velocity field and the cell-substrate tractions. Using the same assumptions as those underlying MSM, namely, a linear and passive constitutive law, the velocity field suffices to compute tractions, from which we can then compare with those measured by traction force microscopy. We find that the calculated tractions and measured tractions are uncorrelated. Since the classical MSM and the Stokes approach both depend on the linear and passive constitutive law, it follows that some serious modification of the underling rheology is needed. One possible modification is the inclusion of an active force. In the special case where this is additive to the linear passive rheology, we have a new relationship between the active force density and the measured velocity (or displacement) field and tractions, which by Newton's laws, must be obeyed.


Asunto(s)
Células Epiteliales/citología , Espacio Intracelular/metabolismo , Modelos Biológicos , Estrés Mecánico , Fenómenos Biomecánicos , Elasticidad , Modelos Lineales
20.
Sci Rep ; 10(1): 966, 2020 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-31969610

RESUMEN

Bronchospasm compresses the bronchial epithelium, and this compressive stress has been implicated in asthma pathogenesis. However, the molecular mechanisms by which this compressive stress alters pathways relevant to disease are not well understood. Using air-liquid interface cultures of primary human bronchial epithelial cells derived from non-asthmatic donors and asthmatic donors, we applied a compressive stress and then used a network approach to map resulting changes in the molecular interactome. In cells from non-asthmatic donors, compression by itself was sufficient to induce inflammatory, late repair, and fibrotic pathways. Remarkably, this molecular profile of non-asthmatic cells after compression recapitulated the profile of asthmatic cells before compression. Together, these results show that even in the absence of any inflammatory stimulus, mechanical compression alone is sufficient to induce an asthma-like molecular signature.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias)/fisiología , Asma/genética , Bronquios/patología , Células Epiteliales/metabolismo , Expresión Génica , Estrés Mecánico , Células Epiteliales/patología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA