Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 280
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Ying Yong Sheng Tai Xue Bao ; 35(4): 1141-1149, 2024 Apr 18.
Artículo en Chino | MEDLINE | ID: mdl-38884249

RESUMEN

Mining causes severe damage to soil ecosystems. Vegetation restoration in abandoned mine areas is an inevitable requirement for sustainable development. Soil microbes, as the most active component of soil organic matter, play a crucial role in the transformation of carbon, nitrogen, phosphorus, and other elements. They are often used as indicators to assess the extent of vegetation restoration in ecologically fragile areas. However, the impacts of vegetation restoration on soil microbial community structure in mining areas at the global scale remains largely unknown. Based on 310 paired observations from 44 papers, we employed the meta-analysis approach to examine the influence of vegetation restoration on soil microbial abundance and biomass in mining area. The results indicated that vegetation restoration significantly promotes soil microbial biomass in mining areas. In comparison to bare soil, vegetation restoration leads to a significant 95.1% increase in soil microbial biomass carbon and a 87.8% increase in soil microbial biomass nitrogen. The abundance of soil bacteria, fungi, and actinomycetes are significantly increased by 1005.4%, 472.4%, and 177.7%, respectively. Among various vegetation restoration types, the exclusive plan-ting of trees exhibits the most pronounced promotion effect on soil microbial biomass and population, which results in a significant increase of 540.3% in soil fungi and 104.5% in actinomycetes, along with a respective enhancement of 110.3% and 106.4% in microbial biomass carbon and nitrogen. Model selection results revealed that soil satura-ted water content and vegetation restoration history contribute most significantly to the abundance of soil bacteria and fungi. Soil available nitrogen has the most significant impact on the abundance of actinomycetes and microbial biomass carbon, while soil available phosphorus emerges as a crucial factor affecting microbial biomass nitrogen. This research could contribute to understanding the relationship between vegetation restoration and the structure of soil microbial communities in mining areas, and providing scientific support for determining appropriate vegetation restoration types in mining areas.


Asunto(s)
Ecosistema , Minería , Microbiología del Suelo , China , Restauración y Remediación Ambiental/métodos , Suelo/química , Árboles/crecimiento & desarrollo , Nitrógeno/análisis , Bacterias/clasificación , Bacterias/crecimiento & desarrollo , Biomasa , Plantas , Conservación de los Recursos Naturales
2.
Saudi Pharm J ; 32(7): 102124, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38933713

RESUMEN

Natural products (NPs) play an irreplaceable role in the intervention of various diseases and have been considered a critical source of drug development. Many new pharmacodynamic compounds with potential clinical applications have recently been derived from NPs. These compounds range from small molecules to polysaccharides, polypeptides, proteins, self-assembled nanoparticles, and extracellular vesicles. This review summarizes various active substances found in NPs. The investigation of active substances in NPs can potentiate new drug development and promote the in-depth comprehension of the mechanism of action of NPs that can be beneficial in the prevention and treatment of human diseases.

4.
Nat Commun ; 15(1): 2920, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575569

RESUMEN

Metal-organic frameworks (MOFs) with diverse chemistry, structures, and properties have emerged as appealing materials for miniaturized solid-state devices. The incorporation of MOF films in these devices, such as the integrated microelectronics and nanophotonics, requires robust patterning methods. However, existing MOF patterning methods suffer from some combinations of limited material adaptability, compromised patterning resolution and scalability, and degraded properties. Here we report a universal, crosslinking-induced patterning approach for various MOFs, termed as CLIP-MOF. Via resist-free, direct photo- and electron-beam (e-beam) lithography, the ligand crosslinking chemistry leads to drastically reduced solubility of colloidal MOFs, permitting selective removal of unexposed MOF films with developer solvents. This enables scalable, micro-/nanoscale (≈70 nm resolution), and multimaterial patterning of MOFs on large-area, rigid or flexible substrates. Patterned MOF films preserve their crystallinity, porosity, and other properties tailored for targeted applications, such as diffractive gas sensors and electrochromic pixels. The combined features of CLIP-MOF create more possibilities in the system-level integration of MOFs in various electronic, photonic, and biomedical devices.

5.
Ying Yong Sheng Tai Xue Bao ; 35(3): 631-638, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38646750

RESUMEN

Litter input triggers the secretion of soil extracellular enzymes and facilitates the release of carbon (C), nitrogen (N), and phosphorus (P) from decomposing litter. However, how soil extracellular enzyme activities were controlled by litter input with various substrates is not fully understood. We examined the activities and stoichiometry of five enzymes including ß-1,4-glucosidase, ß-D-cellobiosidase, ß-1,4-N-acetyl-glucosaminidase, leucine aminopeptidase and acidic phosphatase (AP) with and without litter input in 10-year-old Castanopsis carlesii and Cunninghamia lanceolata plantations monthly during April to August, in October, and in December 2021 by using an in situ microcosm experiment. The results showed that: 1) There was no significant effect of short-term litter input on soil enzyme activity, stoichiometry, and vector properties in C. carlesii plantation. In contrast, short-term litter input significantly increased the AP activity by 1.7% in May and decreased the enzymatic C/N ratio by 3.8% in August, and decreased enzymatic C/P and N/P ratios by 11.7% and 10.3%, respectively, in October in C. lanceolata plantation. Meanwhile, litter input increased the soil enzymatic vector angle to 53.8° in October in C. lanceolata plantations, suggesting a significant P limitation for soil microorganisms. 2) Results from partial least squares regression analyses showed that soil dissolved organic matter and microbial biomass C and N were the primary factors in explaining the responses of soil enzymatic activity to short-term litter input in both plantations. Overall, input of low-quality (high C/N) litter stimulates the secretion of soil extracellular enzymes and accelerates litter decomposition. There is a P limitation for soil microorganisms in the study area.


Asunto(s)
Carbono , Cunninghamia , Fagaceae , Nitrógeno , Fósforo , Microbiología del Suelo , Suelo , Suelo/química , Cunninghamia/crecimiento & desarrollo , Cunninghamia/metabolismo , Carbono/metabolismo , Carbono/análisis , Nitrógeno/metabolismo , Nitrógeno/análisis , Fósforo/metabolismo , Fósforo/análisis , Fagaceae/crecimiento & desarrollo , Fagaceae/metabolismo , Leucil Aminopeptidasa/metabolismo , Celulosa 1,4-beta-Celobiosidasa/metabolismo , Ecosistema , Hojas de la Planta/metabolismo , Hojas de la Planta/química , Acetilglucosaminidasa/metabolismo , Fosfatasa Ácida/metabolismo , beta-Glucosidasa/metabolismo , China
6.
Sci Rep ; 14(1): 6971, 2024 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-38521855

RESUMEN

Doxorubicin has been used extensively as a potent anticancer agent, but its clinical use is limited by its cardiotoxicity. However, the underlying mechanisms remain to be fully elucidated. In this study, we tested whether NADPH oxidase 2 (Nox2) mediates cardiac sympathetic nerve terminal abnormalities and myocyte autophagy, resulting in cardiac atrophy and dysfunction in doxorubicin-induced heart failure. Nox2 knockout (KO) and wild-type (WT) mice were randomly assigned to receive a single injection of doxorubicin (15 mg/kg, i.p.) or saline. WT doxorubicin mice exhibited the decreases in survival rate, left ventricular (LV) wall thickness and LV fractional shortening and the increase in the lung wet-to-dry weight ratio 1 week after the injections. These alterations were attenuated in Nox2 KO doxorubicin mice. In WT doxorubicin mice, myocardial oxidative stress was increased, myocardial noradrenergic nerve fibers were reduced, myocardial expression of PGP9.5, GAP43, tyrosine hydroxylase and norepinephrine transporter was decreased, and these changes were prevented in Nox2 KO doxorubicin mice. Myocyte autophagy was increased and myocyte size was decreased in WT doxorubicin mice, but not in Nox2 KO doxorubicin mice. Nox2 mediates cardiac sympathetic nerve terminal abnormalities and myocyte autophagy-both of which contribute to cardiac atrophy and failure after doxorubicin treatment.


Asunto(s)
Cardiomiopatías , Miocitos Cardíacos , NADPH Oxidasa 2 , Animales , Ratones , Autofagia , Cardiomiopatías/inducido químicamente , Cardiomiopatías/metabolismo , Doxorrubicina/farmacología , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/metabolismo , NADPH Oxidasa 2/genética , NADPH Oxidasa 2/metabolismo , Estrés Oxidativo , Simpatectomía
7.
ACS Biomater Sci Eng ; 10(4): 2282-2298, 2024 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-38526450

RESUMEN

Allergic rhinitis (AR) is a type-I hypersensitivity disease mediated by immunoglobulin E (IgE). Although antihistamines, glucocorticoids, leukotriene receptor antagonists, and other drugs are widely used to treat AR, the various adverse side effects of long-term use of these drugs should not be ignored. Therefore, more effective and safe natural alternative strategies are urgently needed. To this end, this study designed a nanosupramolecular delivery system composed of ß-cyclodextrin supramolecular polymer (PCD), thiolated chitosan (TCS), and natural polyphenol epigallocatechin gallate (EGCG) for intranasal topical continuous treatment of AR. The TCS/PCD@EGCG nanocarriers exhibited an excellent performance in terms of retention and permeability in the nasal mucosa and released the vast majority of EGCG responsively in the nasal microenvironment, thus resulting in the significantly high antibacterial and antioxidant capacities. According to the in vitro model, compared with free EGCG, TCS/PCD@EGCG inhibited mast cell activity and abnormal histamine secretion in a more long-term and sustained manner. According to the in vivo model, whether in the presence of continuous or intermittent administration, TCS/PCD@EGCG substantially inhibited the secretion of allergenic factors and inflammatory factors, mitigated the pathological changes of nasal mucosa, alleviated the symptoms of rhinitis in mice, and produced a satisfactory therapeutic effect on AR. In particular, the therapeutic effect of TCS/PCD@EGCG systems were even superior to that of budesonide during intermittent treatment. Therefore, the TCS/PCD@EGCG nanocarrier is a potential long-lasting antiallergic medicine for the treatment of AR.


Asunto(s)
Catequina/análogos & derivados , Rinitis Alérgica , Animales , Ratones , Rinitis Alérgica/tratamiento farmacológico , Alérgenos/uso terapéutico , Administración Intranasal , Inmunoglobulina E/uso terapéutico
8.
BMC Pulm Med ; 24(1): 29, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38212743

RESUMEN

BACKGROUND: Some medical conditions may increase the risk of developing pulmonary tuberculosis (PTB); however, no systematic study on PTB-associated comorbidities and comorbidity clusters has been undertaken. METHODS: A nested case-control study was conducted from 2013 to 2017 using multi-source big data. We defined cases as patients with incident PTB, and we matched each case with four event-free controls using propensity score matching (PSM). Comorbidities diagnosed prior to PTB were defined with the International Classification of Diseases-10 (ICD-10). The longitudinal relationships between multimorbidity burden and PTB were analyzed using a generalized estimating equation. The associations between PTB and 30 comorbidities were examined using conditional logistic regression, and the comorbidity clusters were identified using network analysis. RESULTS: A total of 4265 cases and 17,060 controls were enrolled during the study period. A total of 849 (19.91%) cases and 1141 (6.69%) controls were multimorbid before the index date. Having 1, 2, and ≥ 3 comorbidities was associated with an increased risk of PTB (aOR 2.85-5.16). Fourteen out of thirty comorbidities were significantly associated with PTB (aOR 1.28-7.27), and the associations differed by sex and age. Network analysis identified three major clusters, mainly in the respiratory, circulatory, and endocrine/metabolic systems, in PTB cases. CONCLUSIONS: Certain comorbidities involving multiple systems may significantly increase the risk of PTB. Enhanced awareness and surveillance of comorbidity are warranted to ensure early prevention and timely control of PTB.


Asunto(s)
Macrodatos , Tuberculosis Pulmonar , Humanos , Estudios de Casos y Controles , Tuberculosis Pulmonar/epidemiología , Comorbilidad , Modelos Logísticos
9.
Eur J Pharmacol ; 967: 176351, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38290568

RESUMEN

Doxorubicin is widely used for the treatment of human cancer, but its clinical use is limited by a cumulative dose-dependent cardiotoxicity. However, the mechanism of doxorubicin-induced cardiac atrophy and failure remains to be fully understood. In this study, we tested whether the specific NADPH oxidase 2 (Nox2) inhibitor GSK2795039 attenuates cardiac sympathetic nerve terminal abnormalities and myocyte autophagy, leading to the amelioration of cardiac atrophy and dysfunction in chronic doxorubicin-induced cardiomyopathy. Mice were randomized to receive saline, doxorubicin (2.5 mg/kg, every other day, 6 times) or doxorubicin plus GSK2795039 (2.5 mg/kg, twice a day, 9 weeks). Left ventricular (LV) total wall thickness and LV ejection fraction were decreased in doxorubicin-treated mice compared with saline-treated mice and the decreases were prevented by the treatment of the specific Nox2 inhibitor GSK2795039. The ratio of total heart weight to tibia length and myocyte cross-sectional area were decreased in doxorubicin-treated mice, and the decreases were attenuated by the GSK2795039 treatment. In doxorubicin-treated mice, myocardial Nox2 and 4-hydroxynonenal levels were increased, myocardial expression of GAP43, tyrosine hydroxylase and norepinephrine transporter, markers of sympathetic nerve terminals, was decreased, and these changes were prevented by the GSK2795039 treatment. The ratio of LC3 II/I, a marker of autophagy, and Atg5, Atg12 and Atg12-Atg5 conjugate proteins were increased in doxorubicin-treated mice, and the increases were attenuated by the GSK2795039 treatment. These findings suggest that inhibition of Nox2 by GSK2795039 attenuates cardiac sympathetic nerve terminal abnormalities and myocyte autophagy, thereby ameliorating cardiac atrophy and dysfunction after chronic doxorubicin treatment.


Asunto(s)
Aminopiridinas , Doxorrubicina , Células Musculares , Sulfonamidas , Animales , Ratones , Atrofia/inducido químicamente , Autofagia , Doxorrubicina/efectos adversos , NADPH Oxidasa 2
10.
Int J Mol Med ; 53(3)2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38214365

RESUMEN

Following the publication of this article, a concerned reader drew to the Editor's attention that, in Fig. 9C on p. 2478 showing the results of Transwell invasion assay experiments, unexpected areas of similarity were identified in terms of the cellular patterns revealed both within the data panels for the six different experiments portrayed in this figure, and comparing among them. After having conducted an internal investigation, the Editor of International Journal of Molecular Medicine has reached the conclusion that the overlapping sections of data shown in this figure were unlikely to have arisen by coincidence. Therefore, on the grounds of a lack of confidence in the integrity of these data, the Editor has decided that the article should be retracted from the publication. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused, and thanks the interested reader for drawing this matter to our attention. [International Journal of Molecular Medicine 42: 2469­2480, 2018; DOI: 10.3892/ijmm.2018.3853].

11.
Comput Inform Nurs ; 42(6): 448-456, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38261470

RESUMEN

Patients with head and neck cancer undergoing radiotherapy encounter physical and psychosocial challenges, indicating unmet needs. Mobile health technology can potentially support patients. This single-armed feasibility study included 30 patients with head and neck cancer undergoing radiotherapy. Patients were asked to use the Health Enjoy System, a mobile health support system that provides a disease-related resource for 1 week. We assessed the usability of the system and its limited efficacy in meeting patients' health information needs. The result showed that the system was well received by patients and effectively met their health information needs. They also reported free comments on the system's content, backend maintenance, and user engagement. This study supplies a foundation for further research to explore the potential benefits of the Health Enjoy System in supporting patients with head and neck cancer.


Asunto(s)
Estudios de Factibilidad , Neoplasias de Cabeza y Cuello , Telemedicina , Humanos , Neoplasias de Cabeza y Cuello/radioterapia , Femenino , Masculino , Persona de Mediana Edad , Anciano , Adulto , Aplicaciones Móviles
12.
Artículo en Inglés | MEDLINE | ID: mdl-37889121

RESUMEN

Slow healing of wounds induces great pain in diabetic patients. However, developing new approaches to promote diabetic wound healing is still one of the toughest challenges in the medical field. Here, we constructed a new double-layer hydrogel to effectively regulate reactive oxygen species (ROS) on the wound and promote diabetic wound healing. The inner layer contains glucose oxidase (Gox), ferrocene-modified quaternary ammonium chitosan (Fc-QCs), and poly(ß-cyclodextrin) (Pß-CD), which is used to generate hydroxyl radicals (•OH) for antibacterial in the early stage of wound healing and collapses gradually. The outer layer is composed of gelatin and dopamine. In the later stage of wound healing, the outer layer contacts the skin, which is beneficial for ROS clearance on the wound. Antibacterial, ROS scavenging, and wound healing experiments have shown that the double-layer hydrogel possesses two-stage ROS regulating properties for programmed diabetic wound healing. In conclusion, it will be one of the most potential dressings for treating diabetic wounds in the future.

13.
Ying Yong Sheng Tai Xue Bao ; 34(10): 2797-2804, 2023 Oct.
Artículo en Chino | MEDLINE | ID: mdl-37897287

RESUMEN

Soil fauna play an important role in key functions of ecosystem such as material cycling. Litter quality and microenvironment of different tree species may regulate soil fauna community structure. In this study, we investigated soil fauna community structure, the differences of taxonomic and functional groups, and the regulatory factors under eight dominant tree species in August 2022. We captured 567 soil fauna (except for termites and ants), belonging to 3 phyla, 10 classes, 26 orders, and 99 families, with Achipteriidae, Trygoniidae, Poduridae, and Isotomidae as the dominant species. Tree species significantly affected soil fauna abundance, following an order: Michelia macclurei > Elaeocarpus decipiens > Castanopsis carlesii > Cunninghamia lanceolata > Lindera communis > Schima superba > Pinus massoniana > Liquidambar formosana. However, the richness, evenness, and diversity of soil fauna under different tree species were significantly different. Richness and diversity of M. macclurei, C. lanceolatas soil fauna were relatively high, while L. formosana, C. carlesii were relatively low. The evenness of meso-microfauna of L. formosana was the highest, which was significantly higher than that of M. macclureis and E. decipiens. The evenness of macrofauna and total soil fauna was not significantly different among the eight tree species. In addition, the abundance of omnivores and herbivores soil fauna was relatively high under M. macclurei, but relatively low under E. decipiens. The abundance of saprophages and predators soil fauna of E. decipiens, M. macclurei was higher than L. formosana, while saprophages was mainly meso-microfauna. Results of redundancy analysis showed that litter N, C:N, and K were the main factors affecting soil fauna community structure. The results indicated that the tree species with thicker litter layer and higher N and K contents may be conducive to enhancing the diversity of soil fauna community and affecting the distribution of different functional groups, thus contributing to the maintenance of forest biodiversity.


Asunto(s)
Artrópodos , Árboles , Animales , China , Ecosistema , Bosques , Suelo
14.
Bone ; 177: 116919, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37739298

RESUMEN

Fluoroquinolone antibiotics are known to induce serious tendinopathies and ligament disorders (TPLDs) on rare occasion, but it is less well-appreciated whether such adverse reactions result from the use of bisphosphonates (BPs). In this study, we assessed the correlation between TPLDs and the use of BPs via U.S. FDA Adverse Event Reporting System (FAERS) database. Bayesian and nonproportional analyses were applied to data retrieved from the FAERS database from the first quarter of 2004 to the third quarter of 2022. A total of 3202 reported cases of TPLDs were associated with five BPs (alendronate, pamidronate, ibandronate, risedronate, zoledronate), with statistically significant reporting odds ratio (ROR), proportional reporting ratio (PRR), and information component (IC). Alendronate showed the highest association with tendinopathies and ligament disorders (ROR = 16.30, PRR = 15.47, IC = 3.88), while zoledronate had the lowest association (ROR = 2.13, PRR = 2.12, IC = 1.08), which was consistent with the results of top 10 preferred terms (PTs) under the narrow standardized MedDRA queries (SMQs) sorted by frequency of reports. Excluding zoledronate, over half of patients who reported BP-related TPLDs were hospitalized, either briefly or extendedly. This was especially true for alendronate, which showed the highest rate of hospitalization (83.25 %), however, the mortality rate reported by those taking alendronate were significantly lower than those of zoledronate and pamidronate. In addition, the clinical characteristics of BP-related TPLDs was analyzed. It is more common to reported in middle-aged and elderly females, the highest proportion was in 50-69 years old. Except for osteoporosis, osteopenia, and osteoporosis prophylaxis, cancer bone metastasis was also the indication of some BPs. The most often reported concomitant/prior medicines were calcium supplements, another BPs, antitumor agents, and nonsteroidal anti-inflammatory drugs. In conclusion, we provide a comprehensive overview of the correlation and clinical characteristics, and prognosis of BP-related TPLDs deserving continued surveillance and appropriate management.

15.
Science ; 381(6665): 1468-1474, 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37769102

RESUMEN

3D printing of inorganic materials with nanoscale resolution offers a different materials processing pathway to explore devices with emergent functionalities. However, existing technologies typically involve photocurable resins that reduce material purity and degrade properties. We develop a general strategy for laser direct printing of inorganic nanomaterials, as exemplified by more than 10 semiconductors, metal oxides, metals, and their mixtures. Colloidal nanocrystals are used as building blocks and photochemically bonded through their native ligands. Without resins, this bonding process produces arbitrary three-dimensional (3D) structures with a large inorganic mass fraction (~90%) and high mechanical strength. The printed materials preserve the intrinsic properties of constituent nanocrystals and create structure-dictated functionalities, such as the broadband chiroptical responses with an anisotropic factor of ~0.24 for semiconducting cadmium chalcogenide nanohelical arrays.

16.
Angew Chem Int Ed Engl ; 62(41): e202305331, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37173278

RESUMEN

Viscosity is an extremely important property for ion transport and wettability of electrolytes. Easy access to viscosity values and a deep understanding of this property remain challenging yet critical to evaluating the electrolyte performance and tailoring electrolyte recipes with targeted properties. We proposed a screened overlapping method to efficiently compute the viscosity of lithium battery electrolytes by molecular dynamics simulations. The origin of electrolyte viscosity was further comprehensively probed. The viscosity of solvents exhibits a positive correlation with the binding energy between molecules, indicating viscosity is directly correlated to intermolecular interactions. Salts in electrolytes enlarge the viscosity significantly with increasing concentrations while diluents serve as the viscosity reducer, which is attributed to the varied binding strength from cation-anion and cation-solvent associations. This work develops an accurate and efficient method for computing the electrolyte viscosity and affords deep insight into viscosity at the molecular level, which exhibits the huge potential to accelerate advanced electrolyte design for next-generation rechargeable batteries.

17.
Front Physiol ; 14: 1146538, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37215183

RESUMEN

Introduction: The similarity between ankylosing spondylitis (AS) and ulcerative colitis (UC) in incidence rate and pathogenesis has been revealed. But the common pathogenesis that explains the relationship between AS and UC is still lacked, and the related genetic research is limited. We purposed to explore shared biomarkers and pathways of AS and UC through integrated bioinformatics. Methods: Gene expression data of AS and UC were obtained in the GEO database. We applied weighted gene co-expression network analysis (WGCNA) to identify AS-related and UC-related co-expression gene modules. Subsequently, machine learning algorithm was used to further screen hub genes. We validated the expression level and diagnostic efficiency of the shared diagnostic gene of AS and UC in external datasets. Gene set enrichment analysis (GSEA) was applied to analyze pathway-level changes between disease group and normal group. Finally, we analyzed the relationship between hub biomarker and immune microenvironment by using the CIBERSORT deconvolution algorithm. Results: 203 genes were obtained by overlapping AS-related gene module and UC-related gene module. Through SVM-RFE algorithm, 19 hub diagnostic genes were selected for AS in GSE25101 and 6 hub diagnostic genes were selected for UC in GSE94648. KCNJ15 was obtained as a common diagnostic gene of AS and UC. The expression of KCNJ15 was validated in independent datasets, and the results showed that KCNJ15 were similarly upregulated in AS samples and UC samples. Besides, ROC analysis also revealed that KCNJ15 had good diagnostic efficacy. The GSEA analysis revealed that oxidative phosphorylation pathway was the shared pathway of AS and UC. In addition, CIBERSORT results revealed the correlation between KCNJ15 gene and immune microenvironment in AS and UC. Conclusion: We have explored a common diagnostic gene KCNJ15 and a shared oxidative phosphorylation pathway of AS and UC through integrated bioinformatics, which may provide a potential diagnostic biomarker and novel insight for studying the mechanism of AS-related UC.

18.
ACS Appl Mater Interfaces ; 15(14): 18450-18462, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36989350

RESUMEN

Li-rich Mn-based layered oxides (LLOs) are one of the most promising cathode materials, which have exceptional anionic redox activity and a capacity that surpasses 250 mA h/g. However, the change from a layered structure to a spinel structure and unstable anionic redox are accompanied by voltage attenuation, poor rate performance, and problematic capacity. The technique of stabilizing the crystal structure and reducing the surface oxygen activity is proposed in this paper. A coating layer and highly concentrated oxygen vacancies are developed on the material's surface, according to scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. In situ EIS shows that structural transformation and oxygen release are inhibited during the first charge and discharge. Optimized 3@LRMA has an average attenuation voltage of 0.55 mV per cycle (vs 1.7 mV) and a capacity retention rate of 93.4% after 200 cycles (vs 52.8%). Postmortem analysis indicates that the successful doping of Al ions into the crystal structure effectively inhibits the structural alteration of the cycling process. The addition of oxygen vacancies reduces the surface lattice's redox activity. Additionally, surface structure deterioration is successfully halted by N- and Cl-doped carbon coating. This finding highlights the significance of lowering the surface lattice oxygen activity and preventing structural alteration, and it offers a workable solution to increase the LLO stability.

19.
Mol Ecol Resour ; 23(5): 1124-1141, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36924341

RESUMEN

DNA barcoding has greatly facilitated studies of taxonomy, biodiversity, biological conservation, and ecology. Here, we establish a reliable DNA barcoding library for Chinese snakes, unveiling hidden diversity with implications for taxonomy, and provide a standardized tool for conservation management. Our comprehensive study includes 1638 cytochrome c oxidase subunit I (COI) sequences from Chinese snakes that correspond to 17 families, 65 genera, 228 named species (80.6% of named species) and 36 candidate species. A barcode gap analysis reveals gaps, where all nearest neighbour distances exceed maximum intraspecific distances, in 217 named species and all candidate species. Three species-delimitation methods (ABGD, sGMYC, and sPTP) recover 320 operational taxonomic units (OTUs), of which 192 OTUs correspond to named and candidate species. Twenty-eight other named species share OTUs, such as Azemiops feae and A. kharini, Gloydius halys, G. shedaoensis, and G. intermedius, and Bungarus multicinctus and B. candidus, representing inconsistencies most probably caused by imperfect taxonomy, recent and rapid speciation, weak taxonomic signal, introgressive hybridization, and/or inadequate phylogenetic signal. In contrast, 43 species and candidate species assign to two or more OTUs due to having large intraspecific distances. If most OTUs detected in this study reflect valid species, including the 36 candidate species, then 30% more species would exist than are currently recognized. Several OTU divergences associate with known biogeographic barriers, such as the Taiwan Strait. In addition to facilitating future studies, this reliable and relatively comprehensive reference database will play an important role in the future monitoring, conservation, and management of Chinese snakes.


Asunto(s)
Biodiversidad , Código de Barras del ADN Taxonómico , Humanos , Animales , Filogenia , Código de Barras del ADN Taxonómico/métodos , Serpientes/genética , Complejo IV de Transporte de Electrones/genética
20.
Front Microbiol ; 14: 1051437, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36846767

RESUMEN

Introduction: Microbiota in the human body are closely related to human diseases. Female urogenital tract and rectal microbes have been considered as important factors affecting female pregnancy, but the mechanism is unknown. Methods: Cervical, vaginal, urethral, and rectal swabs were collected from 22 infertile patients and 10 controls, and follicular fluid was extracted from 22 infertile patients. The microbial composition of different sampling sites of infertile patients was examined. By comparing the microbial composition difference between infertile patients and controls and combining bioinformatics methods to analyze the potential impact of the female urogenital tract (cervical, vaginal and urethral) and rectal microbial diversity on female infertility and pregnancy outcomes. Results: Lactobacillus predominated in the female urogenital tract, but its abundance decreased in infertile patients, whereas the abundance of Gardnerella and Atopobium increased. The microbial changes in the urethra had the same trend as that in the vagina. Compared with healthy controls, the cervical and rectal microbial diversity of infertile patients were significantly increased and decreased, respectively. There might be interactions between microbes in different parts of female. Geobacillus thermogeniticans was enriched in the urogenital tract and rectum of infertile patients, and has a good predictive effect on infertility. Compared with infertile patients, L. johnsonii was enriched in the vagina, urethra, and intestine of the control group. L. acidophilus in follicular fluid might be associated with Non-pregnancy. Conclusion: This study found that the microbial composition of infertile patients was changed compared with that of healthy people. The translocation of Lactobacillus between the rectum and urogenital tract might play a protective barrier role. The changes of Lactobacillus and Geobacillus might be related to female infertility or pregnancy outcome. The study provided a theoretical basis for the future treatment of female infertility from the perspective of microorganisms by detecting the microbial changes associated with female infertility.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA