Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cells ; 12(1)2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36611818

RESUMEN

The blood cells of the fruit fly Drosophila melanogaster show many similarities to their vertebrate counterparts, both in their functions and their differentiation. In the past decades, a wide palette of immunological and transgenic tools and methods have been developed to study hematopoiesis in the Drosophila larva. However, the in vivo observation of blood cells is technically restricted by the limited transparency of the body and the difficulty in keeping the organism alive during imaging. Here we describe an improved ex vivo culturing method that allows effective visualization and selection of live blood cells in primary cultures derived from Drosophila larvae. Our results show that cultured hemocytes accurately represent morphological and functional changes following immune challenges and in case of genetic alterations. Since cell culturing has hugely contributed to the understanding of the physiological properties of vertebrate blood cells, this method provides a versatile tool for studying Drosophila hemocyte differentiation and functions ex vivo.


Asunto(s)
Drosophila melanogaster , Hematopoyesis , Animales , Drosophila melanogaster/genética , Hematopoyesis/fisiología , Drosophila , Diferenciación Celular , Larva , Hemocitos
2.
Dev Biol ; 469: 135-143, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33131706

RESUMEN

Transdifferentiation is a conversion of an already differentiated cell type into another cell type without the involvement of stem cells. This transition is well described in the case of vertebrate immune cells, as well as in Drosophila melanogaster, which therefore serves as a suitable model to study the process in detail. In the Drosophila larva, the latest single-cell sequencing methods enabled the clusterization of the phagocytic blood cells, the plasmatocytes, which are capable of transdifferentiation into encapsulating cells, the lamellocytes. Here we summarize the available data of the past years on the plasmatocyte-lamellocyte transition, and make an attempt to harmonize them with transcriptome-based blood cell clustering to better understand the underlying mechanisms of transdifferentiation in Drosophila, and in general.


Asunto(s)
Transdiferenciación Celular , Drosophila melanogaster/citología , Hematopoyesis , Hemocitos/citología , Animales , Diferenciación Celular , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/inmunología , Drosophila melanogaster/fisiología , Fagocitos/citología
3.
Dev Comp Immunol ; 109: 103701, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32320738

RESUMEN

Cell mediated immunity of the honey bee (Apis mellifera) involves the activity of several hemocyte populations, currently defined by morphological features and lectin binding characteristics. The objective of the present study was to identify molecular markers capable of characterizing subsets of honey bee hemocytes. We developed and employed monoclonal antibodies with restricted reactions to functionally distinct hemocyte subpopulations. Melanizing cells, known as oenocytoids, were defined by an antibody to prophenoloxidase, aggregating cells were identified by the expression of Hemolectin, and phagocytic cells were identified by a marker expressed on granulocytes. We anticipate that this combination of antibodies not only allows for the detection of functionally distinct hemocyte subtypes, but will help to further the exploration of hematopoietic compartments, as well as reveal details of the honey bee cellular immune defense against parasites and microbes.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Abejas/inmunología , Hemocitos/inmunología , Hemolinfa/inmunología , Animales , Anticuerpos Monoclonales/análisis , Abejas/citología , Abejas/microbiología , Biomarcadores/análisis , Escherichia coli/inmunología , Hemocitos/citología , Hemocitos/microbiología , Hemolinfa/citología , Hemolinfa/microbiología , Larva/citología , Larva/inmunología , Larva/microbiología , Microscopía Fluorescente , Fagocitosis/inmunología
4.
Dev Comp Immunol ; 76: 403-411, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28713010

RESUMEN

The identification of molecular markers considerably facilitated the classification and functional analysis of blood cell types. Apis mellifera hemocytes have been classified by morphological criteria and lectin binding properties; however, the use of molecular markers has been minimal. Here we describe a monoclonal antibody to a non-phagocytic subpopulation of A. mellifera hemocytes and to a constituent of the hemolymph clot. We demonstrate that the antibody identifies the A. mellifera hemolectin, a protein carrying human von Willebrand factor homology domains, characteristic of proteins involved in blood coagulation and platelet aggregation in mammals. Hemolectin expressing A. mellifera hemocytes contain the protein as cytoplasmic granules and contribute to the formation of a protein matrix, building up around foreign particles. Consequently, hemolectin as a marker molecule reveals a clear functional heterogeneity of hemocytes, allowing for the analytical separation of hemocyte classes, and could promote the molecular identification of hemocyte lineages in A. mellifera.


Asunto(s)
Abejas/inmunología , Hemocitos/fisiología , Hemolinfa/metabolismo , Lectinas/metabolismo , Trombosis/metabolismo , Animales , Anticuerpos Monoclonales/aislamiento & purificación , Biodiversidad , Separación Celular , Lectinas/genética , Lectinas/inmunología , Mamíferos , Fagocitosis , Agregación Plaquetaria/genética , Homología de Secuencia de Aminoácido , Transcriptoma , Factor de von Willebrand/genética
5.
Insect Biochem Mol Biol ; 87: 45-54, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28633893

RESUMEN

The Nimrod gene cluster, located on the second chromosome of Drosophila melanogaster, is the largest synthenic unit of the Drosophila genome. Nimrod genes show blood cell specific expression and code for phagocytosis receptors that play a major role in fruit fly innate immune functions. We previously identified three homologous genes (vajk-1, vajk-2 and vajk-3) located within the Nimrod cluster, which are unrelated to the Nimrod genes, but are homologous to a fourth gene (vajk-4) located outside the cluster. Here we show that, unlike the Nimrod candidates, the Vajk proteins are expressed in cuticular structures of the late embryo and the late pupa, indicating that they contribute to cuticular barrier functions.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Genes de Insecto , Familia de Multigenes , Animales , Drosophila melanogaster/crecimiento & desarrollo , Embrión no Mamífero , Pupa/genética , Pupa/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA