Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Gels ; 9(11)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37998980

RESUMEN

Currently, tissue engineering has been dedicated to the development of 3D structures through bioprinting techniques that aim to obtain personalized, dynamic, and complex hydrogel 3D structures. Among the different materials used for the fabrication of such structures, proteins and polysaccharides are the main biological compounds (biopolymers) selected for the bioink formulation. These biomaterials obtained from natural sources are commonly compatible with tissues and cells (biocompatibility), friendly with biological digestion processes (biodegradability), and provide specific macromolecular structural and mechanical properties (biomimicry). However, the rheological behaviors of these natural-based bioinks constitute the main challenge of the cell-laden printing process (bioprinting). For this reason, bioprinting usually requires chemical modifications and/or inter-macromolecular crosslinking. In this sense, a comprehensive analysis describing these biopolymers (natural proteins and polysaccharides)-based bioinks, their modifications, and their stimuli-responsive nature is performed. This manuscript is organized into three sections: (1) tissue engineering application, (2) crosslinking, and (3) bioprinting techniques, analyzing the current challenges and strengths of biopolymers in bioprinting. In conclusion, all hydrogels try to resemble extracellular matrix properties for bioprinted structures while maintaining good printability and stability during the printing process.

2.
Comput Methods Programs Biomed ; 216: 106673, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35149430

RESUMEN

BACKGROUND AND OBJECTIVE: Cryo-electron microscopy using single particle analysis is a powerful technique for obtaining 3D reconstructions of macromolecules in near native conditions. One of its major advances is its capacity to reveal conformations of dynamic molecular complexes. Most popular and successful current approaches to analyzing heterogeneous complexes are founded on Bayesian inference. However, these 3D classification methods require the tuning of specific parameters by the user and the use of complicated 3D re-classification procedures for samples affected by extensive heterogeneity. Thus, the success of these approaches highly depends on the user experience. We introduce a robust approach to identify many different conformations presented in a cryo-EM dataset based on Bayesian inference through Relion classification methods that does not require tuning of parameters and reclassification strategies. METHODS: The algorithm allows both 2D and 3D classification and is based on a hierarchical clustering approach that runs automatically without requiring typical inputs, such as the number of conformations present in the dataset or the required classification iterations. This approach is applied to robustly determine the energy landscapes of macromolecules. RESULTS: We tested the performance of the methods proposed here using four different datasets, comprising structurally homogeneous and highly heterogeneous cases. In all cases, the approach provided excellent results. The routines are publicly available as part of the CryoMethods plugin included in the Scipion package. CONCLUSIONS: Our results show that the proposed method can be used to align and classify homogeneous and heterogeneous datasets without requiring previous alignment information or any prior knowledge about the number of co-existing conformations. The approach can be used for both 2D and 3D autoclassification and only requires an initial volume. In addition, the approach is robust to the "attractor" problem providing many different conformations/views for samples affected by extensive heterogeneity. The obtained 3D classes can render high resolution 3D structures, while the obtained energy landscapes can be used to determine structural trajectories.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador , Teorema de Bayes , Análisis por Conglomerados , Microscopía por Crioelectrón/métodos , Procesamiento de Imagen Asistido por Computador/métodos
3.
Micromachines (Basel) ; 11(11)2020 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-33198062

RESUMEN

Bioprinting is a complex process, highly dependent on bioink properties (materials and cells) and environmental conditions (mainly temperature, humidity and CO2 concentration) during the bioprinting process. To guarantee proper cellular viability and an accurate geometry, it is mandatory to control all these factors. Despite internal factors, such as printing pressures, temperatures or speeds, being well-controlled in actual bioprinters, there is a lack in the controlling of external parameters, such as room temperature or humidity. In this sense, the objective of this work is to control the temperature and humidity of a new, atmospheric enclosure system for bioprinting. The control has been carried out with a decoupled proportional integral derivative (PID) controller that was designed, simulated and experimentally tested in order to ensure the proper operation of all its components. Finally, the PID controller can stabilize the atmospheric enclosure system temperature in 311 s and the humidity in 65 s, with an average error of 1.89% and 1.30%, respectively. In this sense, the proposed atmospheric enclosure system can reach and maintain the proper temperature and humidity values during post-printing and provide a pre-incubation environment that promotes stability, integrity and cell viability of the 3D bioprinted structures.

4.
Artículo en Inglés | MEDLINE | ID: mdl-32850697

RESUMEN

Nowadays, bioprinting is rapidly evolving and hydrogels are a key component for its success. In this sense, synthesis of hydrogels, as well as bioprinting process, and cross-linking of bioinks represent different challenges for the scientific community. A set of unified criteria and a common framework are missing, so multidisciplinary research teams might not efficiently share the advances and limitations of bioprinting. Although multiple combinations of materials and proportions have been used for several applications, it is still unclear the relationship between good printability of hydrogels and better medical/clinical behavior of bioprinted structures. For this reason, a PRISMA methodology was conducted in this review. Thus, 1,774 papers were retrieved from PUBMED, WOS, and SCOPUS databases. After selection, 118 papers were analyzed to extract information about materials, hydrogel synthesis, bioprinting process, and tests performed on bioprinted structures. The aim of this systematic review is to analyze materials used and their influence on the bioprinting parameters that ultimately generate tridimensional structures. Furthermore, a comparison of mechanical and cellular behavior of those bioprinted structures is presented. Finally, some conclusions and recommendations are exposed to improve reproducibility and facilitate a fair comparison of results.

5.
J Struct Biol ; 208(3): 107397, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31568828

RESUMEN

Structural information from macromolecules provides key insights into the way complexes perform their biological functions. The reconstruction process leading to the final three-dimensional (3D) map is iterative and requires an initial volume to prime the refinement procedure. Particle images are aligned to this first reference and subsequently a new map is calculated from these particles. The accurate determination of an ab initio initial volume is still a challenging and open problem in cryo-electron microscopy (cryo-EM). Different algorithms are available to estimate an initial volume from the dataset. Some of these methods provide multiple candidate initial maps and users looking for robustness typically run different approaches. In this case, users arbitrarily evaluate the different obtained candidate maps, as we lack robust methods to objectively assess the accuracy of initial references. This workflow is subjective and error-prone preventing implementation of high-throughput data processing procedures. In this work, we present a robust method to determine the best initial map or maps from a set of ab initio initial volumes obtained from one or multiple different approaches. The method is based on evaluating multiple small subsets of candidate initial volumes and particle images through reference-based 3D classifications. Obtained 3D classes of accurate initial maps will result majoritarian and the respective attracted particles will be aligned with high angular accuracies. We have tested the proposed approach with structurally homogeneous and heterogeneous datasets providing satisfactory results with both type of data.


Asunto(s)
Microscopía por Crioelectrón/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Apoferritinas/química , Imagenología Tridimensional/métodos , Complejos Multiproteicos/química , Subunidades Ribosómicas/química , Empalmosomas/química
6.
J Struct Biol ; 204(3): 457-463, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30296492

RESUMEN

Three dimensional electron microscopy is becoming a very data-intensive field in which vast amounts of experimental images are acquired at high speed. To manage such large-scale projects, we had previously developed a modular workflow system called Scipion (de la Rosa-Trevín et al., 2016). We present here a major extension of Scipion that allows processing of EM images while the data is being acquired. This approach helps to detect problems at early stages, saves computing time and provides users with a detailed evaluation of the data quality before the acquisition is finished. At present, Scipion has been deployed and is in production mode in seven Cryo-EM facilities throughout the world.


Asunto(s)
Microscopía por Crioelectrón/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Programas Informáticos , Algoritmos , Biología Computacional/métodos , Reproducibilidad de los Resultados
7.
J Struct Biol ; 203(2): 90-93, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29551714

RESUMEN

The introduction of Direct Electron Detector (DED) videos in the Electron Microscope field has boosted Single Particle Analysis to a point in which it is currently considered to be a key technique in Structural Biology. In this article we introduce an approach to estimate the DED camera gain at each pixel from the movies themselves. This gain is needed to have the set of recorded frames into a coherent gray level range, homogeneous over the whole image. The algorithm does not need any other input than the DED movie itself, being capable of providing an estimate of the camera gain image, helping to identify dead pixels and cases of incorrectly calibrated cameras. We propose the algorithm to be used either to validate the experimentally acquired gain image (for instance, to follow its possible change over time) or to verify that there is no residual gain image after experimentally correcting for the camera gain. We show results for a number of DED camera models currently in use (DE, Falcon II, Falcon 3, and K2).


Asunto(s)
Microscopía Electrónica/métodos , Algoritmos , Microscopía por Crioelectrón , Procesamiento de Imagen Asistido por Computador , Fotograbar
8.
Sci Rep ; 7(1): 6307, 2017 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-28740215

RESUMEN

Single Particle Analysis using cryo-electron microscopy is a structural biology technique aimed at capturing the three-dimensional (3D) conformation of biological macromolecules. Projection images used to construct the 3D density map are characterized by a very low signal-to-noise ratio to minimize radiation damage in the samples. As a consequence, the 3D image alignment process is a challenging and error prone task which usually determines the success or failure of obtaining a high quality map. In this work, we present an approach able to quantify the alignment precision and accuracy of the 3D alignment process, which is then being used to help the reconstruction process in a number of ways, such as: (1) Providing quality indicators of the macromolecular map for soft validation, (2) Assessing the degree of homogeneity of the sample and, (3), Selecting subsets of representative images. We present experimental results in which the quality of the finally obtained 3D maps is clearly improved.

9.
Biomed Res Int ; 2017: 6482567, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29312997

RESUMEN

One of the key steps in Electron Microscopy is the tomographic reconstruction of a three-dimensional (3D) map of the specimen being studied from a set of two-dimensional (2D) projections acquired at the microscope. This tomographic reconstruction may be performed with different reconstruction algorithms that can be grouped into several large families: direct Fourier inversion methods, back-projection methods, Radon methods, or iterative algorithms. In this review, we focus on the latter family of algorithms, explaining the mathematical rationale behind the different algorithms in this family as they have been introduced in the field of Electron Microscopy. We cover their use in Single Particle Analysis (SPA) as well as in Electron Tomography (ET).


Asunto(s)
Algoritmos , Imagenología Tridimensional/métodos , Microscopía Electrónica/métodos , Humanos
10.
Prog Biophys Mol Biol ; 124: 1-30, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27666962

RESUMEN

Fourier Shell Correlation, Spectral Signal-to-Noise Ratio, Fourier Neighbour Correlation, and Differential Phase Residual are different measures that have been proposed over time to determine the spatial resolution achieved by a certain 3D reconstruction. Estimates of B-factors to describe the reduction in signal-to-noise ratio with increasing resolution is also a useful parameter. All these concepts are interrelated and different thresholds have been given for each one of them. However, the problem of resolution assessment in 3DEM is still far from settled and preferences are normally adopted in order to choose the "correct" threshold. In this paper we review the different concepts, their theoretical foundations and the derivation of their statistical distributions (the basis for establishing sensible thresholds). We provide theoretical justifications for some common practices in the field for which a formal justification was missing. We also analyze the relationship between SSNR and B-factors, the electron dose needed for achieving a given contrast and resolution, the number of images required, etc. Finally, we review the consequences for the number of particles needed to achieve a certain resolution and how to analyze the Signal-to-Noise Ratio for a sequence of imaging operations.


Asunto(s)
Imagenología Tridimensional/métodos , Microscopía Electrónica/métodos , Análisis de Fourier , Relación Señal-Ruido
11.
J Struct Biol ; 196(3): 525-533, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27769763

RESUMEN

Random conical tilt (RCT) and orthogonal tilt reconstruction (OTR) are two remarkable methods for reconstructing the three-dimensional structure of macromolecules at low resolution. These techniques use two images at two different sample tilts. One of the most demanding steps in these methods at the image processing level is to identify corresponding particles on both micrographs, and manual or semiautomatic matching methods are usually used. Here we present an approach to solve this bottleneck with a fully automatic method for assigning particle tilt pairs. This new algorithm behaves correctly with a variety of samples, covering the range from small to large macromolecules and from sparse to densely populated fields of view. It is also more rapid than previous approaches. The roots of the method lie in a Delaunay triangulation of the set of independently picked coordinates on both the untilted and tilted micrographs. These triangulations are then used to search an affine transformation between the untilted and tilted triangles. The affine transformation that maximizes the number of correspondences between the two micrographs defines the coordinate matching.


Asunto(s)
Imagenología Tridimensional/métodos , Sustancias Macromoleculares/química , Algoritmos , Microscopía por Crioelectrón/métodos , Sustancias Macromoleculares/ultraestructura
12.
J Struct Biol ; 196(3): 515-524, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27725258

RESUMEN

Automatic or semiautomatic data collection approaches on a transmission electron microscope (TEM) for Single Particle Analysis, capable of acquiring large datasets composed of only high quality images, are of great importance to obtain 3D density maps with the highest resolution possible. Typically, this task is performed by an experienced microscopist, who manually decides to keep or discard images according to subjective criteria. Therefore, this methodology is slow, intensive in human work and subjective. In this work, we propose a method to automatically or semiautomatically perform this image selection task. The approach is based on some simple, fast and effective image quality descriptors, which can be computed during acquisition, to characterize foil-hole and data images. The proposed approach has been used to evaluate the quality of different datasets consisting of foil-hole and data images obtained with a FEI Titan Krios electron microscope. The results show that the proposed method is very effective evaluating the quality of foil-hole and data images, as well as predicting the quality of the data images from the foil-hole images.


Asunto(s)
Microscopía por Crioelectrón/métodos , Recolección de Datos , Microscopía Electrónica de Transmisión/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos
13.
Arch Esp Urol ; 69(8): 451-461, 2016 Oct.
Artículo en Español | MEDLINE | ID: mdl-27725321

RESUMEN

The mechanics of urine during its transport from the renal pelvis to the bladder is of great interest for urologists. The knowledge of the different physical variables and their interrelationship, both in physiologic movements and pathologies, will help a better diagnosis and treatment. The objective of this chapter is to show the physics principles and their most relevant basic relations in urine transport, and to bring them over the clinical world. For that, we explain the movement of urine during peristalsis, ureteral obstruction and in a ureter with a stent. This explanation is based in two tools used in bioengineering: the theoretical analysis through the Theory of concontinuous media and Ffluid mechanics and computational simulation that offers a practical solution for each scenario. Moreover, we review other contributions of bioengineering to the field of Urology, such as physical simulation or additive and subtractive manufacturing techniques. Finally, we list the current limitations for these tools and the technological development lines with more future projection. CONCLUSIONS: In this chapter we aim to help urologists to understand some important concepts of bioengineering, promoting multidisciplinary cooperation to offer complementary tools that help in diagnosis and treatment of diseases.


Asunto(s)
Simulación por Computador , Hidrodinámica , Catéteres Urinarios , Fenómenos Fisiológicos del Sistema Urinario , Humanos , Maniquíes
14.
J Struct Biol ; 195(1): 93-9, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27108186

RESUMEN

In the past few years, 3D electron microscopy (3DEM) has undergone a revolution in instrumentation and methodology. One of the central players in this wide-reaching change is the continuous development of image processing software. Here we present Scipion, a software framework for integrating several 3DEM software packages through a workflow-based approach. Scipion allows the execution of reusable, standardized, traceable and reproducible image-processing protocols. These protocols incorporate tools from different programs while providing full interoperability among them. Scipion is an open-source project that can be downloaded from http://scipion.cnb.csic.es.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/instrumentación , Microscopía Electrónica/métodos , Imagenología Tridimensional/métodos , Reproducibilidad de los Resultados , Flujo de Trabajo
15.
Comput Math Methods Med ; 2016: 5710798, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27127535

RESUMEN

Many urologists are currently studying new designs of ureteral stents to improve the quality of their operations and the subsequent recovery of the patient. In order to help during this design process, many computational models have been developed to simulate the behaviour of different biological tissues and provide a realistic computational environment to evaluate the stents. However, due to the high complexity of the involved tissues, they usually introduce simplifications to make these models less computationally demanding. In this study, the interaction between urine flow and a double-J stented ureter with a simplified geometry has been analysed. The Fluid-Structure Interaction (FSI) of urine and the ureteral wall was studied using three models for the solid domain: Mooney-Rivlin, Yeoh, and Ogden. The ureter was assumed to be quasi-incompressible and isotropic. Data obtained in previous studies from ex vivo and in vivo mechanical characterization of different ureters were used to fit the mentioned models. The results show that the interaction between the stented ureter and urine is negligible. Therefore, we can conclude that this type of models does not need to include the FSI and could be solved quite accurately assuming that the ureter is a rigid body and, thus, using the more simple Computational Fluid Dynamics (CFD) approach.


Asunto(s)
Uréter/fisiopatología , Uréter/cirugía , Urología/instrumentación , Algoritmos , Animales , Simulación por Computador , Femenino , Hidrodinámica , Inflamación , Pelvis Renal/patología , Modelos Teóricos , Presión , Reproducibilidad de los Resultados , Programas Informáticos , Stents , Estrés Mecánico , Porcinos , Micción , Orina , Urología/métodos
16.
J Struct Biol ; 195(1): 123-8, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27102900

RESUMEN

Macromolecular complexes perform their physiological functions by local rearrangements of their constituents and biochemically interacting with their reaction partners. These rearrangements may involve local rotations and the induction of local strains causing different mechanical efforts and stretches at the different areas of the protein. The analysis of these local deformations may reveal important insight into the way proteins perform their tasks. In this paper we introduce a method to perform this kind of local analysis using Electron Microscopy volumes in a fully objective and automatic manner. For doing so, we exploit the continuous nature of the result of an elastic image registration using B-splines as its basis functions. We show that the results obtained by the new automatic method are consistent with previous observations on these macromolecules.


Asunto(s)
Sustancias Macromoleculares/química , Microscopía Electrónica/métodos , Adenosina Trifosfato/química , Algoritmos , Automatización , Proteínas Bacterianas/química , Fenómenos Biomecánicos , Chaperonina 60/química , Proteínas de Choque Térmico/química , Humanos , Ribosomas Mitocondriales/química , Modelos Teóricos , Chaperonas Moleculares/química , Unión Proteica , Rotación
17.
J Struct Biol ; 194(3): 423-33, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27085420

RESUMEN

Cryo-electron microscopy (cryo-EM) of frozen-hydrated preparations of isolated macromolecular complexes is the method of choice to obtain the structure of complexes that cannot be easily studied by other experimental methods due to their flexibility or large size. An increasing number of macromolecular structures are currently being obtained at subnanometer resolution but the interpretation of structural details in such EM-derived maps is often difficult because of noise at these high-frequency signal components that reduces their contrast. In this paper, we show that the method for EM density-map approximation using Gaussian functions can be used for denoising of single-particle EM maps of high (typically subnanometer) resolution. We show its denoising performance using simulated and experimental EM density maps of several complexes.


Asunto(s)
Microscopía por Crioelectrón/normas , Sustancias Macromoleculares/química , Relación Señal-Ruido , Microscopía por Crioelectrón/métodos , Estructura Molecular , Distribución Normal , Conformación Proteica , Subunidades Ribosómicas Grandes/química , beta-Galactosidasa/química
18.
Methods Mol Biol ; 950: 171-93, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23086876

RESUMEN

In this chapter we describe the steps needed for reconstructing the three-dimensional structure of a macromolecular complex starting from its projections collected in electron micrographs. The concepts are shown through the use of Xmipp 3.0, a software suite specifically designed for the image processing of biological structures imaged with electron or X-ray microscopy. We illustrate the image processing workflow by applying it to the images of Bovine Papilloma virus published in Wolf et al. (Proc Natl Acad Sci USA 107:6298-6303, 2010). We show that in the case of high-quality, homogeneous datasets with a priori knowledge about the initial volume, we can have a high-resolution 3D reconstruction in less than 1 day using a computer cluster with only 32 processors.


Asunto(s)
Imagenología Tridimensional/métodos , Microscopía Electrónica/métodos , Animales , Automatización , Cápside/ultraestructura , Bovinos , Deltapapillomavirus/ultraestructura , Modelos Moleculares , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA