Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanoscale Adv ; 5(11): 3091-3103, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37260485

RESUMEN

The impact of geometric features, light absorption spectra, and electrochemical active surface area on photoelectrochemical properties was investigated in this work. Nanoforests of ZnO nanorods with rationally controlled morphologies were grown on ITO substrates by the hydrothermal method and utilized as a model for this purpose. The size of the nanorods was systematically adjusted by varying the concentration of polyethyleneimine as a cation surfactant in the growth solution. It was found that the emergent geometric characteristics (i.e. the aspect ratio) increased almost at the same pace as the electrochemically active surface area, but the light scattering effect slightly increased as a result of the random spatial orientation of the nanorods. The large surface area and the void space between nanorods increased the photon-to-current conversion efficiency by promoting the hole transfer process at the electrode/electrolyte interface. A maximum photocurrent density of 0.06 mA cm-2 (0.5 V vs. NHE) for smaller diameter and length ZnO nanorods (ZnO-P1) was obtained under 365 nm UV light illumination. Additionally, we provide visual evidence that a shorter photogenerated hole diffusion distance results in improved charge separation efficiency using Mn2+ as the photogenerated hole imaging agent. Therefore, the present work demonstrates a facile strategy for nanoforest morphology improvement for generating strong contact at the ZnO NR electrode/electrolyte interface, which is favourable in energy conversion and storage technologies.

2.
Int J Mol Sci ; 24(1)2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36613884

RESUMEN

Band bending modification of metal/semiconductor hybrid nanostructures requires low-cost and effective designs in photoelectrochemical (PEC) water splitting. To this end, it is evinced that gradient doping of Au nanoparticles (NPs) inwards the ZnO nanorods (NRs) through thermal treatment facilitated faster transport of the photo-induced charge carriers. Systematic PEC measurements show that the resulting gradient Au-doped ZnO NRs yielded a photocurrent density of 0.009 mA/cm2 at 1.1 V (vs. NHE), which is 2.5-fold and 8-fold improved compared to those of Au-sensitized ZnO and the as-prepared ZnO NRs, respectively. The IPCE and ABPE efficiency tests confirmed the boosted photoresponse of gradient Au-incorporated ZnO NRs, particularly in the visible spectrum due to the synergistic surface plasmonic effect of Au NPs. A gradient Au dopant profile promoted the separation and transfer of the photo-induced charge carriers at the electrolyte interface via more upward band bending according to the elaborated electrochemical impedance spectroscopy and Kelvin probe force microscopy analyses. Therefore, this research presents an economical and facile strategy for preparing gradient plasmonic noble NP-incorporated semiconductor NRs, which have excellent potential in energy conversion and storage technologies.


Asunto(s)
Nanopartículas del Metal , Nanoestructuras , Nanotubos , Óxido de Zinc , Oro
3.
Nanoscale Adv ; 3(22): 6358-6372, 2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36133492

RESUMEN

Nitrogen fixation is considered one of the grand challenges of the 21st century for achieving the ultimate vision of a green and sustainable future. It is crucial to develop and design sustainable nitrogen fixation techniques with minimal environmental impact as an alternative to the energy-cost intensive Haber-Bosch process. Heterojunction-based photocatalysis has recently emerged as a viable solution for the various environmental and energy issues, including nitrogen fixation. The primary advantages of heterojunction photocatalysts are spatially separated photogenerated charge carriers while retaining high oxidation and reduction potentials of the individual components, enabling visible light-harvesting. This review summarises the fundamental principles of photocatalytic heterostructures, the reaction mechanism of the nitrogen reduction reaction, ammonia detection methods, and the current progress of heterostructured photocatalysts for nitrogen fixation. Finally, future challenges and prospects are briefly discussed for the emerging field of heterostructured photocatalytic nitrogen fixation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA