Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Front Cell Infect Microbiol ; 12: 869085, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35531326

RESUMEN

Malaria is one of the most widespread parasitic diseases, especially in Africa, Southeast Asia and South America. One of the greatest problems for control of the disease is the emergence of drug resistance, which leads to a need for the development of new antimalarial compounds. The biosynthesis of isoprenoids has been investigated as part of a strategy to identify new targets to obtain new antimalarial drugs. Several isoprenoid quinones, including menaquinone-4 (MK-4/vitamin K2), α- and γ-tocopherol and ubiquinone (UQ) homologs UQ-8 and UQ-9, were previously detected in in vitro cultures of Plasmodium falciparum in asexual stages. Herein, we described for the first time the presence of phylloquinone (PK/vitamin K1) in P. falciparum and discuss the possible origins of this prenylquinone. While our results in metabolic labeling experiments suggest a biosynthesis of PK prenylation via phytyl pyrophosphate (phytyl-PP) with phytol being phosphorylated, on the other hand, exogenous PK attenuated atovaquone effects on parasitic growth and respiration, showing that this metabolite can be transported from extracellular environment and that the mitochondrial electron transport system (ETS) of P. falciparum is capable to interact with PK. Although the natural role and origin of PK remains elusive, this work highlights the PK importance in plasmodial metabolism and future studies will be important to elucidate in seeking new targets for antimalarial drugs.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria , Antimaláricos/farmacología , Humanos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Plasmodium falciparum , Vitamina K 1/metabolismo , Vitamina K 1/farmacología
2.
J Cell Sci ; 133(10)2020 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-32295845

RESUMEN

Eukaryotic flagella are complex microtubule-based organelles that, in many organisms, contain extra-axonemal structures, such as the outer dense fibres of mammalian sperm and the paraflagellar rod (PFR) of trypanosomes. Flagellum assembly is a complex process occurring across three main compartments, the cytoplasm, the transition zone and the flagellum itself. The process begins with the translation of protein components followed by their sorting and trafficking into the flagellum, transport to the assembly site and incorporation. Flagella are formed from over 500 proteins and the principles governing assembly of the axonemal components are relatively clear. However, the coordination and location of assembly of extra-axonemal structures are less clear. We have discovered two cytoplasmic proteins in Trypanosoma brucei that are required for PFR formation, PFR assembly factors 1 and 2 (PFR-AF1 and PFR-AF2, respectively). Deletion of either PFR-AF1 or PFR-AF2 dramatically disrupted PFR formation and caused a reduction in the amount of major PFR proteins. The existence of cytoplasmic factors required for PFR formation aligns with the concept that processes facilitating axoneme assembly occur across multiple compartments, and this is likely a common theme for extra-axonemal structure assembly.


Asunto(s)
Axonema , Trypanosoma brucei brucei , Animales , Cilios , Flagelos , Proteínas Protozoarias/genética
3.
FEBS Open Bio ; 9(4): 743-754, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30984548

RESUMEN

Leishmaniasis is a neglected disease caused by a trypanosomatid protozoan of the genus Leishmania. Most drugs used to treat leishmaniasis are highly toxic, and the emergence of drug-resistant strains has been observed. Therefore, new therapeutic targets against leishmaniasis are required. Several isoprenoid compounds, including dolichols or ubiquinones, have been shown to be important for cell viability and proliferation in various trypanosomatid species. Here, we detected the biosynthesis of tocopherol in Leishmania (L.) amazonensis promastigotes in vitro through metabolic labelling with [1-(n)-3H]-phytol. Subsequently, we confirmed the presence of vitamin E in the parasite by gas chromatography-mass spectrometry. Treatment with usnic acid or nitisinone, inhibitors of precursors of vitamin E synthesis, inhibited growth of the parasite in a concentration-dependent manner. This study provides the first evidence of tocopherol biosynthesis in a trypanosomatid and suggests that inhibitors of the enzyme 4-hydroxyphenylpyruvate dioxygenase may be suitable for use as antileishmanial compounds. Database: The amino acid sequence of a conserved hypothetical protein [Leishmania mexicana MHOM/GT/2001/U1103] has been deposited in GenBank (CBZ28005.1).


Asunto(s)
4-Hidroxifenilpiruvato Dioxigenasa/antagonistas & inhibidores , Benzofuranos/farmacología , Ciclohexanonas/farmacología , Inhibidores Enzimáticos/farmacología , Leishmania/metabolismo , Nitrobenzoatos/farmacología , Tocoferoles/metabolismo , Leishmania/crecimiento & desarrollo
4.
Mem Inst Oswaldo Cruz ; 113(10): e180174, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30110072

RESUMEN

Farnesyl diphosphate synthase/geranylgeranyl diphosphate synthase (FPPS/GGPPS) is a key enzyme in the synthesis of isoprenic chains. Risedronate, a bisphosphonate containing nitrogen (N-BP), is a potent inhibitor of blood stage Plasmodium. Here, we show that P. falciparum parasites overexpressing FPPS/GGPPS are more resistant to risedronate, suggesting that this enzyme is an important target, and bisphosphonate analogues can be used as potential antimalarial drugs.


Asunto(s)
Antimaláricos/farmacología , Farnesiltransferasa/biosíntesis , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/enzimología , Ácido Risedrónico/farmacología , Análisis de Varianza , Animales , Antimaláricos/análisis , Western Blotting , Resistencia a Medicamentos , Farnesiltransferasa/análisis , Plasmodium falciparum/crecimiento & desarrollo , Valores de Referencia , Ácido Risedrónico/análisis
5.
Sci Rep ; 5: 18429, 2015 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-26688062

RESUMEN

Malaria is a tropical disease with significant morbidity and mortality. A better understanding of the metabolism of its most important etiological agent, Plasmodium falciparum, is paramount to the development of better treatment and other mitigation measures. Farnesyldiphosphate synthase/geranylgeranyldiphosphate synthase (FPPS/GGPPS) is a key enzyme in the synthesis of isoprenic chains present in many essential structures. In P. falciparum, as well as a handful of other organisms, FPPS/GGPPS has been shown to be a bifunctional enzyme. By genetic tagging and microscopy, we observed a changing localization of FPPS/GGPPS in blood stage parasites. Given the great importance of alternative splicing and other transcriptional phenomena in gene regulation and the generation of protein diversity, we have investigated the processing of the FPPS/GGPPS transcript in P. falciparum by high-throughput sequencing methods in four time-points along the intraerythrocytic cycle of P. falciparum. We have identified levels of transcript diversity an order of magnitude higher than previously observed in this organism, as well as a few stage-specific splicing events. Our data suggest that alternative splicing in P. falciparum is an important feature for gene regulation and the generation of protein diversity.


Asunto(s)
Empalme Alternativo/genética , Geraniltranstransferasa/genética , Malaria Falciparum/genética , Transcripción Genética , Animales , Regulación Enzimológica de la Expresión Génica , Variación Genética , Geraniltranstransferasa/sangre , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Malaria Falciparum/sangre , Malaria Falciparum/parasitología , Plasmodium falciparum/enzimología , Plasmodium falciparum/genética , Plasmodium falciparum/patogenicidad
6.
Antimicrob Agents Chemother ; 59(6): 3180-8, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25779575

RESUMEN

The increasing resistance of malaria parasites to almost all available drugs calls for the characterization of novel targets and the identification of new compounds. Carotenoids are polyisoprenoids from plants, algae, and some bacteria, and they are biosynthesized by Plasmodium falciparum but not by mammalian cells. Biochemical and reverse genetics approaches were applied to demonstrate that phytoene synthase (PSY) is a key enzyme for carotenoid biosynthesis in P. falciparum and is essential for intraerythrocytic growth. The known PSY inhibitor squalestatin reduces biosynthesis of phytoene and kills parasites during the intraerythrocytic cycle. PSY-overexpressing parasites showed increased biosynthesis of phytoene and its derived product phytofluene and presented a squalestatin-resistant phenotype, suggesting that this enzyme is the primary target of action of this drug in the parasite.


Asunto(s)
Antimaláricos/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Carotenoides/biosíntesis , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/metabolismo , Antimaláricos/química , Compuestos Bicíclicos Heterocíclicos con Puentes/química
7.
Malar J ; 12: 184, 2013 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-23734739

RESUMEN

BACKGROUND: Isoprenoids are the most diverse and abundant group of natural products. In Plasmodium falciparum, isoprenoid synthesis proceeds through the methyl erythritol diphosphate pathway and the products are further metabolized by farnesyl diphosphate synthase (FPPS), turning this enzyme into a key branch point of the isoprenoid synthesis. Changes in FPPS activity could alter the flux of isoprenoid compounds downstream of FPPS and, hence, play a central role in the regulation of a number of essential functions in Plasmodium parasites. METHODS: The isolation and cloning of gene PF3D7_18400 was done by amplification from cDNA from mixed stage parasites of P. falciparum. After sequencing, the fragment was subcloned in pGEX2T for recombinant protein expression. To verify if the PF3D7_1128400 gene encodes a functional rPfFPPS protein, its catalytic activity was assessed using the substrate [4-14C] isopentenyl diphosphate and three different allylic substrates: dimethylallyl diphosphate, geranyl diphosphate or farnesyl diphosphate. The reaction products were identified by thin layer chromatography and reverse phase high-performance liquid chromatography. To confirm the product spectrum formed of rPfFPPS, isoprenic compounds were also identified by mass spectrometry. Apparent kinetic constants KM and Vmax for each substrate were determined by Michaelis-Menten; also, inhibition assays were performed using risedronate. RESULTS: The expressed protein of P. falciparum FPPS (rPfFPPS) catalyzes the synthesis of farnesyl diphosphate, as well as geranylgeranyl diphosphate, being therefore a bifunctional FPPS/geranylgeranyl diphosphate synthase (GGPPS) enzyme. The apparent KM values for the substrates dimethylallyl diphosphate, geranyl diphosphate and farnesyl diphosphate were, respectively, 68 ± 5 µM, 7.8 ± 1.3 µM and 2.06 ± 0.4 µM. The protein is expressed constitutively in all intra-erythrocytic stages of P. falciparum, demonstrated by using transgenic parasites with a haemagglutinin-tagged version of FPPS. Also, the present data demonstrate that the recombinant protein is inhibited by risedronate. CONCLUSIONS: The rPfFPPS is a bifunctional FPPS/GGPPS enzyme and the structure of products FOH and GGOH were confirmed mass spectrometry. Plasmodial FPPS represents a potential target for the rational design of chemotherapeutic agents to treat malaria.


Asunto(s)
Farnesiltransferasa/genética , Farnesiltransferasa/metabolismo , Plasmodium falciparum/enzimología , Cromatografía Liquida , Clonación Molecular , Farnesiltransferasa/química , Plasmodium falciparum/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem , Terpenos/metabolismo
8.
PLoS One ; 7(7): e40981, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22815885

RESUMEN

Targeted regulation of protein levels is an important tool to gain insights into the role of proteins essential to cell function and development. In recent years, a method based on mutated forms of the human FKBP12 has been established and used to great effect in various cell types to explore protein function. The mutated FKBP protein, referred to as destabilization domain (DD) tag when fused with a native protein at the N- or C-terminus targets the protein for proteosomal degradation. Regulated expression is achieved via addition of a compound, Shld-1, that stabilizes the protein and prevents degradation. A limited number of studies have used this system to provide powerful insight into protein function in the human malaria parasite Plasmodium falciparum. In order to better understand the DD inducible system in P. falciparum, we studied the effect of Shld-1 on parasite growth, demonstrating that although development is not impaired, it is delayed, requiring the appropriate controls for phenotype interpretation. We explored the quantified regulation of reporter Green Fluorescent Protein (GFP) and luciferase constructs fused to three DD variants in parasite cells either via transient or stable transfection. The regulation obtained with the original FKBP derived DD domain was compared to two triple mutants DD24 and DD29, which had been described to provide better regulation for C-terminal tagging in other cell types. When cloned to the C-terminal of reporter proteins, DD24 provided the strongest regulation allowing reporter activity to be reduced to lower levels than DD and to restore the activity of stabilised proteins to higher levels than DD29. Importantly, DD24 has not previously been applied to regulate proteins in P. falciparum. The possibility of regulating an exported protein was addressed by targeting the Ring-Infected Erythrocyte Surface Antigen (RESA) at its C-terminus. The tagged protein demonstrated an important modulation of its expression.


Asunto(s)
Malaria/parasitología , Plasmodium falciparum/metabolismo , Proteínas de Unión a Tacrolimus/metabolismo , Animales , Genes Reporteros , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Mutación , Unión Proteica , Estructura Terciaria de Proteína , Proteoma , Proteínas Protozoarias/química , Factores de Tiempo , Transfección
9.
FEBS Lett ; 584(23): 4761-4768, 2010 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-21036171

RESUMEN

Herein, we show that intraerythrocytic stages of Plasmodium falciparum have an active pathway for biosynthesis of menaquinone. Kinetic assays confirmed that plasmodial menaquinone acts at least in the electron transport. Similarly to Escherichia coli, we observed increased levels of menaquinone in parasites kept under anaerobic conditions. Additionally, the mycobacterial inhibitor of menaquinone synthesis Ro 48-8071 also suppressed menaquinone biosynthesis and growth of parasites, although off-targets may play a role in this growth-inhibitory effect. Due to its absence in humans, the menaquinone biosynthesis can be considered an important drug target for malaria.


Asunto(s)
Eritrocitos/parasitología , Estadios del Ciclo de Vida , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/metabolismo , Vitamina K 2/análogos & derivados , Anaerobiosis , Animales , Benzofenonas/farmacología , Electrones , Malaria/tratamiento farmacológico , Malaria/metabolismo , Terapia Molecular Dirigida , Plasmodium falciparum/efectos de los fármacos , Vitamina K 2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA