RESUMEN
For prostate cancer patients who experience biochemical progression during androgen deprivation therapy (ADT), prostate-specific membrane antigen positron emission tomography/computed tomography (PSMA PET/CT) has not been prospectively compared to planar bone scan plus CT. This was a single-arm, head-to-head, prospective phase II trial (NCT04928820) designed to enroll 102 men with prostate cancer who experienced biochemical progression (rising prostate-specific antigen [PSA] ≥ 1 ng/mL) during ADT. All patients received 68Ga-PSMA-11 PET/CT and 99mTc-MDP planar bone scans. Each scan was interpreted by three central independent readers. The primary endpoint was the per-patient bone metastasis detection rate of PSMA PET/CT versus planar bone scan and CT. Secondary endpoints compared the number of bone metastases detected per patient and the inter-reader agreement of each imaging modality. Twenty-two men were enrolled between July 2021 and June 2022. Due to slow accrual following approval of PSMA PET radiotracers in the U.S. and a lack of a statistical signal between the two imaging modalities on interim analysis, this trial was closed early on October 2022. Median PSA was 8.5 ng/mL (interquartile range: 1.6-77.6). There was 100% agreement between the two scans. Six patients (27%) had negative findings and 16 patients (73%) had positive findings on both scans. PSMA PET/CT and bone scan plus CT detected an equal number of bone lesions for 14 patients (64%), PSMA PET/CT detected more bone lesions for six patients (27%), and bone scan plus CT detected more bone lesions for two patients (9.1%) (p = 0.092). The inter-reader agreement rates of PSMA PET/CT and bone scan plus CT were 96% and 82%, respectively (p = 0.25). In men with biochemical progression during ADT, 68Ga-PSMA-11 PET/CT and 99mTc-MDP planar bone scan plus CT had identical bone metastasis detection rates. Bone scan plus CT can continue to serve as a cost-effective and readily accessible restaging modality in patients with biochemical progression. ClinicalTrials.gov NCT04928820. Registered 16/06/2021.
Asunto(s)
Antagonistas de Andrógenos , Neoplasias Óseas , Tomografía Computarizada por Tomografía de Emisión de Positrones , Neoplasias de la Próstata , Humanos , Masculino , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Anciano , Antagonistas de Andrógenos/uso terapéutico , Neoplasias Óseas/secundario , Neoplasias Óseas/diagnóstico por imagen , Neoplasias Óseas/tratamiento farmacológico , Persona de Mediana Edad , Estudios Prospectivos , Antígeno Prostático Específico/sangre , Progresión de la Enfermedad , Glutamato Carboxipeptidasa II/metabolismo , Antígenos de Superficie/metabolismo , Tomografía Computarizada por Rayos X/métodos , Anciano de 80 o más Años , Huesos/diagnóstico por imagen , Huesos/patología , Huesos/efectos de los fármacos , Huesos/metabolismo , Radioisótopos de Galio , Radiofármacos , Isótopos de GalioRESUMEN
Background: [177Lu]Lu-PSMA-617 (177Lu-PSMA-617) prolonged life in patients with metastatic castration-resistant prostate cancer (mCRPC) in VISION (NCT03511664). However, distinguishing between patients likely and unlikely to respond remains a clinical challenge. We present the first multivariable models of outcomes with 177Lu-PSMA-617 built using data from VISION, a large prospective phase 3 clinical trial powered for overall survival. Methods: Adults with progressive post androgen receptor pathway inhibitor and taxane prostate-specific membrane antigen (PSMA)-positive mCRPC received 177Lu-PSMA-617 plus protocol-permitted standard of care (SoC) or SoC alone. In this post hoc analysis, multivariable Cox proportional hazards models of overall survival (OS) and radiographic progression-free survival (rPFS), and a logistic regression model of prostate-specific antigen response (≥50% decline; PSA50) were constructed and evaluated using C-index or receiver operating characteristic (ROC) analyses with bootstrapping validation. Nomograms were constructed for visualisation. Findings: Patients were randomised between June 2018 and October 2019. Data from all 551 patients in the 177Lu-PSMA-617 arm were analysed in multivariable modelling. The OS nomogram (C-index, 0.73; 95% confidence interval [CI], 0.70-0.76) included whole-body maximum standardised uptake value (SUVmax), time since diagnosis, opioid analgesic use, aspartate aminotransferase, haemoglobin, lymphocyte count, presence of PSMA-positive lesions in lymph nodes, lactate dehydrogenase (LDH), alkaline phosphatase (ALP), and neutrophil count. The rPFS nomogram (C-index, 0.68; 0.65-0.72) included SUVmax, time since diagnosis, opioid analgesic use, lymphocyte count, presence of liver metastases by computed tomography, LDH, and ALP. The PSA50 nomogram (area under ROC curve, 0.72; 95% CI, 0.68-0.77) included SUVmax, lymphocyte count and ALP. Performances of the OS and rPFS models were maintained when they were reconstructed excluding SUVmax. Interpretation: These models of outcomes with 177Lu-PSMA-617 are the first built using prospective phase 3 data. They show that a combination of pretreatment laboratory, clinical, and imaging parameters, reflecting both patient and tumour status, influences outcomes. These models are important for aiding treatment selection, patient management, and clinical trial design. Funding: Novartis.
RESUMEN
The phase 3 VISION trial demonstrated that [177Lu]Lu-PSMA-617 prolonged progression-free survival and overall survival (OS) in prostate-specific membrane antigen [PSMA]-positive metastatic castration-resistant prostate cancer (mCRPC) patients who progressed on taxane-based chemotherapy and androgen receptor-signaling inhibitors (ARSIs). The U.S. expanded-access program (EAP; NCT04825652) was opened to provide access to [177Lu]Lu-PSMA-617 for eligible patients until regulatory approval was obtained. This study aimed to evaluate the efficacy and safety profile of [177Lu]Lu-PSMA-617 within the EAP and compare the results with those from the VISION trial. Methods: Patients enrolled in the EAP at 4 institutions in the United States with available toxicity and outcome data were included. Outcome measures included OS, a prostate-specific antigen (PSA) response rate (RR) of at least 50%, and incidences of toxicity according to Common Terminology Criteria for Adverse Events version 5.0. Differences in baseline characteristics, outcome data, and toxicity between the EAP and VISION were evaluated using t testing of proportions and survival analyses. Results: In total, 117 patients with mCRPC who received [177Lu]Lu-PSMA-617 within the EAP between May 2021 and March 2022 were eligible and included in this analysis. Patients enrolled in the EAP were more heavily pretreated with ARSI (≥2 ARSI regimens: 70% vs. 46%; P < 0.001) and had worse performance status at baseline (Eastern Cooperative Oncology Group score ≥ 2: 19% vs. 7%; P < 0.001) than VISION patients. EAP and VISION patients had similar levels of grade 3 or higher anemia (18% vs. 13%; P = 0.15), thrombocytopenia (13% vs. 8%; P = 0.13), and neutropenia (3% vs. 3%; P = 0.85) and similar PSA RRs (42% vs. 46%; P = 0.50) and OS (median: 15.1 vs. 15.3 mo; P > 0.05). Conclusion: Patients with PSMA-positive mCRPC who received [177Lu]Lu-PSMA-617 within the EAP were later in their disease trajectory than VISION patients. Patients enrolled in the EAP achieved similar PSA RRs and OS and had a safety profile similar to that of the VISION trial patients.
RESUMEN
[177Lu]Lu-PSMA-617 was approved by the U.S. Food and Drug Administration for patients with prostate-specific membrane antigen (PSMA)-positive metastatic castration-resistant prostate cancer (mCRPC). Since the time of regulatory approval, however, real-world data have been lacking. This study investigated the efficacy, safety, and outcome predictors of [177Lu]Lu-PSMA-617 at a major U.S. academic center. Methods: Patients with mCRPC who received [177Lu]Lu-PSMA-617 at the Johns Hopkins Hospital outside clinical trials were screened for inclusion. Patients who underwent [177Lu]Lu-PSMA-617 and had available outcome data were included in this study. Outcome data included prostate-specific antigen (PSA) response (≥50% decline), PSA progression-free survival (PFS), and overall survival (OS). Toxicity data were evaluated according to the Common Terminology Criteria for Adverse Events version 5.03. The study tested the association of baseline circulating tumor DNA mutational status in homologous recombination repair, PI3K alteration pathway, and aggressive-variant prostate cancer-associated genes with treatment outcome. Baseline PSMA PET/CT images were analyzed using SelectPSMA, an artificial intelligence algorithm, to predict treatment outcome. Associations with the observed treatment outcome were evaluated. Results: All 76 patients with PSMA-positive mCRPC who received [177Lu]Lu-PSMA-617 met the inclusion criteria. A PSA response was achieved in 30 of 74 (41%) patients. The median PSA PFS was 4.1 mo (95% CI, 2.0-6.2 mo), and the median OS was 13.7 mo (95% CI, 11.3-16.1 mo). Anemia of grade 3 or greater, thrombocytopenia, and neutropenia were observed in 9 (12%), 3 (4%), and 1 (1%), respectively, of 76 patients. Transient xerostomia was observed in 23 (28%) patients. The presence of aggressive-variant prostate cancer-associated genes was associated with a shorter PSA PFS (median, 1.3 vs. 6.3 mo; P = 0.040). No other associations were observed between circulating tumor DNA mutational status and treatment outcomes. Eighteen of 71 (25%) patients classified by SelectPSMA as nonresponders had significantly lower rates of PSA response than patients classified as likely responders (6% vs. 51%; P < 0.001), a shorter PSA PFS (median, 1.3 vs. 6.3 mo; P < 0.001), and a shorter OS (median, 6.3 vs. 14.5 mo; P = 0.046). Conclusion: [177Lu]Lu-PSMA-617 offered in a real-world setting after regulatory approval in the United States demonstrated antitumor activity and a favorable toxicity profile. Artificial-intelligence-based analysis of baseline PSMA PET/CT images may improve patient selection. Validation of these findings on larger cohorts is warranted.
RESUMEN
This analysis aimed to identify clinical factors associated with positivity on repeat 68Ga-PSMA-11 PET/CT after a negative scan in patients with recurrent prostate cancer (PCa) under observation. Methods: This single-center, retrospective analysis included patients who underwent at least 2 68Ga-PSMA-11 PET/CT scans (PET1 and PET2) at UCLA between October 2016 and June 2021 for recurrent PCa with negative PET1 and no PCa-related treatments between the 2 scans. Using Prostate Cancer Molecular Imaging Standardized Evaluation criteria to define negative and positive scans, the final cohort was divided into PET2-negative (PET2-Neg) and PET2-positive (PET2-Pos). The same PET1 was used twice in the more than 2 PET cases with inclusion criteria fulfilled. Patient characteristics and clinical parameters were compared between the 2 cohorts using Mann-Whitney U test and Fisher exact test. Areas under the curve (AUCs) of the receiver operating characteristic and the Youden index were computed to determine the discrimination ability of statistically significant factors and specific cut points that maximized sensitivity and specificity, respectively. Results: The final analysis included 83 sets of 2 PET/CT scans from 70 patients. Thirty-nine of 83 (47%) sets were PET2-Neg, and 44 of 83 (53%) sets were PET2-Pos. Prostate-specific antigen (PSA) increased from PET1 to PET2 for all 83 (100%) sets of scans. Median PSA at PET1 was 0.4 ng/mL (interquartile range, 0.2-1.0) and at PET2 was 1.6 ng/mL (interquartile range, 0.9-3.8). We found higher serum PSA at PET2 (median, 1.8 vs. 1.1 ng/mL; P = 0.015), absolute PSA difference (median, 1.4 vs. 0.7 ng/mL; P = 0.006), percentage of PSA change (median, +270.4% vs. +150.0%: P = 0.031), and median PSA velocity (0.044 vs. 0.017 ng/mL/wk, P = 0.002) and shorter PSA doubling time (DT; median, 5.1 vs. 8.3 mo; P = 0.006) in the PET2-Pos cohort than in the PET2-Neg cohort. Receiver operating characteristic curves showed cutoffs for PSA at PET2 of 4.80 ng/mL (sensitivity, 34%; specificity, 92%; AUC, 0.66), absolute PSA difference of 0.95 ng/mL (sensitivity, 62%; specificity, 71%; AUC, 0.68), percentage of PSA change of a positive 289.50% (sensitivity, 48%; specificity, 82%; AUC, 0.64), PSA velocity of 0.033 ng/mL/wk (sensitivity, 57%; specificity, 80%; AUC, 0.70), and PSA DT of 7.91 mo (sensitivity, 71%; specificity, 62%; AUC, 0.67). Conclusion: Patients with recurrent PCa under observation after a negative 68Ga-PSMA-11 PET/CT scan with markedly elevated serum PSA levels and shorter PSA DT are more likely to have positive findings on repeat 68Ga-PSMA-11 PET/CT.
Asunto(s)
Ácido Edético , Isótopos de Galio , Radioisótopos de Galio , Oligopéptidos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Neoplasias de la Próstata , Humanos , Masculino , Neoplasias de la Próstata/diagnóstico por imagen , Estudios Retrospectivos , Anciano , Ácido Edético/análogos & derivados , Persona de Mediana Edad , Recurrencia , Recurrencia Local de Neoplasia/diagnóstico por imagen , Anciano de 80 o más Años , Antígeno Prostático Específico/sangreRESUMEN
177Lu-DOTATATE is an effective second-line treatment for metastatic or nonresectable neuroendocrine tumors. This treatment can result in hematologic severe adverse reactions (SARs). Preemptive identification of patients at risk of SARs could mitigate this risk and improve treatment safety and outcomes. Methods: Demographic and oncologic history, pretreatment laboratory values, and SAR frequency were obtained for 126 sequential patients treated with 177Lu-DOTATATE. Univariable and multivariable logistic regression models identified factors correlating with SARs. Results: Relative pretreatment anemia, leukopenia, thrombocytopenia, and elevated mean corpuscular volume (MCV) were significantly correlated with SARs, with an odds ratio of 16 (95% CI, 5-65) in patients with an MCV greater than 95 fL. Conclusion: Pretreatment bone marrow dyscrasias, including an MCV greater than 95 fL, may predict patients at risk for SARs when treated with 177Lu-DOTATATE. Further study is needed to determine whether the risks of SARs outweigh the benefit in these patients.
Asunto(s)
Índices de Eritrocitos , Tumores Neuroendocrinos , Octreótido , Compuestos Organometálicos , Humanos , Octreótido/análogos & derivados , Octreótido/uso terapéutico , Octreótido/efectos adversos , Compuestos Organometálicos/uso terapéutico , Compuestos Organometálicos/efectos adversos , Femenino , Masculino , Persona de Mediana Edad , Anciano , Tumores Neuroendocrinos/radioterapia , Tumores Neuroendocrinos/sangre , Adulto , Enfermedades Hematológicas/etiología , Anciano de 80 o más Años , Estudios RetrospectivosRESUMEN
BACKGROUND AND OBJECTIVE: Treatment planning through the diagnostic dimension of theranostics provides insights into predicting the absorbed dose of RPT, with the potential to individualize radiation doses for enhancing treatment efficacy. However, existing studies focusing on dose prediction from diagnostic data often rely on organ-level estimations, overlooking intra-organ variations. This study aims to characterize the intra-organ theranostic heterogeneity and utilize artificial intelligence techniques to localize them, i.e. to predict voxel-wise absorbed dose map based on pre-therapy PET. METHODS: 23 patients with metastatic castration-resistant prostate cancer treated with [177Lu]Lu-PSMA I&T RPT were retrospectively included. 48 treatment cycles with pre-treatment PET imaging and at least 3 post-therapeutic SPECT/CT imaging were selected. The distribution of PET tracer and RPT dose was compared for kidney, liver and spleen, characterizing intra-organ heterogeneity differences. Pharmacokinetic simulations were performed to enhance the understanding of the correlation. Two strategies were explored for pre-therapy voxel-wise dosimetry prediction: (1) organ-dose guided direct projection; (2) deep learning (DL)-based distribution prediction. Physical metrics, dose volume histogram (DVH) analysis, and identity plots were applied to investigate the predicted absorbed dose map. RESULTS: Inconsistent intra-organ patterns emerged between PET imaging and dose map, with moderate correlations existing in the kidney (r = 0.77), liver (r = 0.5), and spleen (r = 0.58) (P < 0.025). Simulation results indicated the intra-organ pharmacokinetic heterogeneity might explain this inconsistency. The DL-based method achieved a lower average voxel-wise normalized root mean squared error of 0.79 ± 0.27%, regarding to ground-truth dose map, outperforming the organ-dose guided projection (1.11 ± 0.57%) (P < 0.05). DVH analysis demonstrated good prediction accuracy (R2 = 0.92 for kidney). The DL model improved the mean slope of fitting lines in identity plots (199% for liver), when compared to the theoretical optimal results of the organ-dose approach. CONCLUSION: Our results demonstrated the intra-organ heterogeneity of pharmacokinetics may complicate pre-therapy dosimetry prediction. DL has the potential to bridge this gap for pre-therapy prediction of voxel-wise heterogeneous dose map.
Asunto(s)
Antígenos de Superficie , Glutamato Carboxipeptidasa II , Neoplasias de la Próstata Resistentes a la Castración , Radiometría , Radiofármacos , Humanos , Masculino , Glutamato Carboxipeptidasa II/metabolismo , Radiofármacos/uso terapéutico , Radiofármacos/farmacocinética , Neoplasias de la Próstata Resistentes a la Castración/radioterapia , Neoplasias de la Próstata Resistentes a la Castración/diagnóstico por imagen , Anciano , Estudios Retrospectivos , Medicina de Precisión/métodos , Persona de Mediana Edad , Tomografía de Emisión de Positrones/métodos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodosRESUMEN
Prostate-specific membrane antigen targeting positron emission tomography (PSMA-PET) is routinely used for the staging and restaging of patients with various stages of prostate cancer. For clear communication with referring physicians and to improve inter-reader agreement, the use of standardized reporting templates is mandatory. Increasingly, tumor volume is used by reporting and response assessment frameworks to prognosticate patient outcome or measure response to therapy. However, the quantification of tumor volume is often too time-consuming in routine clinical practice. Machine learning-based tools can facilitate the quantification of tumor volume for improved outcome prognostication.
Asunto(s)
Aprendizaje Automático , Neoplasias de la Próstata , Humanos , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Masculino , Tomografía de Emisión de Positrones/métodos , Glutamato Carboxipeptidasa II , Antígenos de Superficie , Estadificación de NeoplasiasRESUMEN
ABSTRACT: Prostate cancer (PCa) is the most common noncutaneous malignancy in men. Until recent years, accurate imaging of men with newly diagnosed PCa, or recurrent or low-volume metastatic disease, was limited. Further, therapeutic options for men with advanced, metastatic, castration-resistant disease were increasingly limited as a result of increasing numbers of systemic therapies being combined in the upfront metastatic setting. The advent of urea-based, small-molecule inhibitors of prostate-specific membrane antigen (PSMA) has partially addressed those shortcomings in diagnosis and therapy of PCa. On the diagnostic side, there are multiple pivotal phase III trials with several different agents having demonstrated utility in the initial staging setting, with generally modest sensitivity but very high specificity for determining otherwise-occult pelvic nodal involvement. That latter statistic drives the utility of the scan by allowing imaging interpreters to read with very high sensitivity while maintaining a robust specificity. Other pivotal phase III trials have demonstrated high detection efficiency in patients with biochemical failure, with high positive predictive value at the lesion level, opening up possible new avenues of therapy such as metastasis-directed therapy. Beyond the diagnostic aspects of PSMA-targeted radiotracers, the same urea-based chemical scaffolds can be altered to deliver therapeutic isotopes to PCa cells that express PSMA. To date, one such agent, when combined with best standard-of-care therapy, has demonstrated an ability to improve overall survival, progression-free survival, and freedom from skeletal events relative to best standard-of-care therapy alone in men with metastatic, castration-resistant PCa who are post chemotherapy. Within the current milieu, there are a number of important future directions including the use of artificial intelligence to better leverage diagnostic findings, further medicinal chemistry refinements to the urea-based structure that may allow improved tumor targeting and decreased toxicities, and the incorporation of new radionuclides that may better balance efficacy with toxicities than those nuclides that are available.
Asunto(s)
Antígenos de Superficie , Glutamato Carboxipeptidasa II , Neoplasias de la Próstata , Radiofármacos , Humanos , Masculino , Radiofármacos/administración & dosificación , Radiofármacos/uso terapéutico , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/terapia , Glutamato Carboxipeptidasa II/metabolismo , Glutamato Carboxipeptidasa II/antagonistas & inhibidores , Antígenos de Superficie/metabolismoRESUMEN
Objective criteria for measuring treatment response in prostate cancer are critical to clinical research and practice. The Prostate Cancer Working Group 3 criteria are widely accepted relying only on conventional imaging for radiographic treatment response. Prostate-specific membrane antigen PET/computed tomography was proven to be superior to conventional imaging in initial diagnosis and biochemical recurrence of prostate cancer. Moreover, there is growing evidence of its role in treatment response assessment in prostate cancer. This study will review the different criteria for imaging treatment response on conventional and advanced molecular imaging for different therapies, and the future perspective in posttherapy imaging.
Asunto(s)
Neoplasias de la Próstata , Humanos , Masculino , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/terapia , Radiofármacos , Resultado del TratamientoRESUMEN
Uptake segmentation and classification on PSMA PET/CT are important for automating whole-body tumor burden determinations. We developed and evaluated an automated deep learning (DL)-based framework that segments and classifies uptake on PSMA PET/CT. We identified 193 [18F] DCFPyL PET/CT scans of patients with biochemically recurrent prostate cancer from two institutions, including 137 [18F] DCFPyL PET/CT scans for training and internally testing, and 56 scans from another institution for external testing. Two radiologists segmented and labelled foci as suspicious or non-suspicious for malignancy. A DL-based segmentation was developed with two independent CNNs. An anatomical prior guidance was applied to make the DL framework focus on PSMA-avid lesions. Segmentation performance was evaluated by Dice, IoU, precision, and recall. Classification model was constructed with multi-modal decision fusion framework evaluated by accuracy, AUC, F1 score, precision, and recall. Automatic segmentation of suspicious lesions was improved under prior guidance, with mean Dice, IoU, precision, and recall of 0.700, 0.566, 0.809, and 0.660 on the internal test set and 0.680, 0.548, 0.749, and 0.740 on the external test set. Our multi-modal decision fusion framework outperformed single-modal and multi-modal CNNs with accuracy, AUC, F1 score, precision, and recall of 0.764, 0.863, 0.844, 0.841, and 0.847 in distinguishing suspicious and non-suspicious foci on the internal test set and 0.796, 0.851, 0.865, 0.814, and 0.923 on the external test set. DL-based lesion segmentation on PSMA PET is facilitated through our anatomical prior guidance strategy. Our classification framework differentiates suspicious foci from those not suspicious for cancer with good accuracy.
Asunto(s)
Aprendizaje Profundo , Tomografía Computarizada por Tomografía de Emisión de Positrones , Neoplasias de la Próstata , Humanos , Masculino , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Glutamato Carboxipeptidasa II/metabolismo , Antígenos de Superficie/metabolismo , Anciano , Lisina/análogos & derivados , Urea/análogos & derivadosRESUMEN
Response Evaluation Criteria in Prostate-Specific Membrane Antigen Imaging (RECIP) 1.0 is an evidence-based framework to evaluate therapeutic efficacy in metastatic prostate cancer using prostate-specific membrane antigen (PSMA) PET/CT. This study aimed to evaluate the associations of interim PSMA PET/CT by RECIP 1.0 with short-term outcome after radiopharmaceutical treatment. Methods: This multicenter retrospective study included patients with metastatic castration-resistant prostate cancer who underwent [177Lu]Lu-PSMA radiopharmaceutical therapy at 3 academic centers and received PSMA PET/CT at baseline and at 12 wk. Pairs of PSMA PET/CT images were assessed by 5 readers for visual RECIP 1.0. The primary outcome was the association of RECIP with prostate-specific antigen progression-free survival (PSA-PFS) by Kaplan-Meier analysis. Results: In total, 124 of 287 screened patients met the inclusion criteria, with 0 (0%), 29 (23%), 54 (44%), and 41 (33%) of those 124 patients having complete response, partial response, stable disease, or progressive disease (PD) by visual RECIP 1.0, respectively. Patients with visual RECIP PD had a significantly shorter PSA-PFS than those with RECIP stable disease or with RECIP partial response (2.6 vs. 6.4 vs. 8.4 mo; P < 0.001). The median PSA-PFS among patients with RECIP PD versus those with non-RECIP PD was 2.6 versus 7.2 mo (hazard ratio, 13.0; 95% CI, 7.0-24.1; P < 0.001). Conclusion: PSMA PET/CT by RECIP 1.0 after 2 cycles of [177Lu]Lu-PSMA is prognostic for PSA-PFS. PSMA PET/CT by RECIP 1.0 may be used in earlier stages of prostate cancer to evaluate drug efficacy and to predict progression-free survival.
Asunto(s)
Lutecio , Metástasis de la Neoplasia , Tomografía Computarizada por Tomografía de Emisión de Positrones , Supervivencia sin Progresión , Neoplasias de la Próstata Resistentes a la Castración , Radiofármacos , Humanos , Masculino , Neoplasias de la Próstata Resistentes a la Castración/radioterapia , Neoplasias de la Próstata Resistentes a la Castración/diagnóstico por imagen , Neoplasias de la Próstata Resistentes a la Castración/patología , Anciano , Radiofármacos/uso terapéutico , Estudios Retrospectivos , Lutecio/uso terapéutico , Persona de Mediana Edad , Anciano de 80 o más Años , Glutamato Carboxipeptidasa II/metabolismo , Antígeno Prostático Específico/sangre , Antígenos de Superficie/metabolismo , Resultado del Tratamiento , Compuestos Heterocíclicos con 1 Anillo/uso terapéutico , RadioisótoposRESUMEN
BACKGROUND: Prognostic models have been developed using data from a multicentre noncomparative study to forecast the likelihood of a 50% reduction in prostate-specific antigen (PSA50), longer prostate-specific antigen (PSA) progression-free survival (PFS), and longer overall survival (OS) in patients with metastatic castration-resistant prostate cancer receiving [177Lu]Lu-PSMA radioligand therapy. The predictive utility of the models to identify patients likely to benefit most from [177Lu]Lu-PSMA compared with standard chemotherapy has not been established. OBJECTIVE: To determine the predictive value of the models using data from the randomised, open-label, phase 2, TheraP trial (primary objective) and to evaluate the clinical net benefit of the PSA50 model (secondary objective). DESIGN, SETTING, AND PARTICIPANTS: All 200 patients were randomised in the TheraP trial to receive [177Lu]Lu-PSMA-617 (n = 99) or cabazitaxel (n = 101) between February 2018 and September 2019. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Predictive performance was investigated by testing whether the association between the modelled outcome classifications (favourable vs unfavourable outcome) was different for patients randomised to [177Lu]Lu-PSMA versus cabazitaxel. The clinical benefit of the PSA50 model was evaluated using a decision curve analysis. RESULTS AND LIMITATIONS: The probability of PSA50 in patients classified as having a favourable outcome was greater in the [177Lu]Lu-PSMA-617 group than in the cabazitaxel group (odds ratio 6.36 [95% confidence interval {CI} 1.69-30.80] vs 0.96 [95% CI 0.32-3.05]; p = 0.038 for treatment-by-model interaction). The PSA50 rate in patients with a favourable outcome for [177Lu]Lu-PSMA-617 versus cabazitaxel was 62/88 (70%) versus 31/85 (36%). The decision curve analysis indicated that the use of the PSA50 model had a clinical net benefit when the probability of a PSA response was ≥30%. The predictive performance of the models for PSA PFS and OS was not established (treatment-by-model interaction: p = 0.36 and p = 0.41, respectively). CONCLUSIONS: A previously developed outcome classification model for PSA50 was demonstrated to be both predictive and prognostic for the outcome after [177Lu]Lu-PSMA-617 versus cabazitaxel, while the PSA PFS and OS models had purely prognostic value. The models may aid clinicians in defining strategies for patients with metastatic castration-resistant prostate cancer who failed first-line chemotherapy and are eligible for [177Lu]Lu-PSMA-617 and cabazitaxel. PATIENT SUMMARY: In this report, we validated previously developed statistical models that can predict a response to Lu-PSMA radioligand therapy in patients with advanced prostate cancer. We found that the statistical models can predict patient survival, and aid in determining whether Lu-PSMA therapy or cabazitaxel yields a higher probability to achieve a serum prostate-specific antigen response.
RESUMEN
In metastatic castration-resistant prostate cancer (mCRPC) patients treated with prostate-specific membrane antigen (PSMA)-targeted radioligand therapy (RLT), the recently proposed criteria for evaluating response to PSMA PET (RECIP 1.0) based on 68Ga- and 18F-labeled PET agents provided prognostic information in addition to changes in prostate-specific antigen (PSA) levels. Our aim was to evaluate the prognostic performance of this framework for overall survival (OS) in patients undergoing RLT and imaged with [18F]PSMA-1007 PET/CT and compare the prognostic performance with the PSA-based response assessment. Methods: In total, 73 patients with mCRPC who were scanned with [18F]PSMA-1007 PET/CT before and after 2 cycles of RLT were retrospectively analyzed. We calculated the changes in serum PSA levels (ΔPSA) and quantitative PET parameters for the whole-body tumor burden (SUVmean, SUVmax, PSMA tumor volume, and total lesion PSMA). Men were also classified following the Prostate Cancer Working Group 3 (PCWG3) criteria for ΔPSA and RECIP 1.0 for PET imaging response. We performed univariable Cox regression analysis, followed by multivariable and Kaplan-Meier analyses. Results: Median OS was 15 mo with a median follow-up time of 14 mo. Univariable Cox regression analysis provided significant associations with OS for ΔPSA (per percentage, hazard ratio [HR], 1.004; 95% CI, 1.002-1.007; P < 0.001) and PSMA tumor volume (per unit, HR, 1.003; 95% CI, 1.000-1.005; P = 0.03). Multivariable Cox regression analysis confirmed ΔPSA (per percentage, HR, 1.004; 95% CI, 1.001-1.006; P = 0.006) as an independent prognosticator for OS. Kaplan-Meier analyses provided significant segregation between individuals with versus those without any PSA response (19 mo vs. 14 mo; HR, 2.00; 95% CI, 0.95-4.18; P = 0.04). Differentiation between patients with or without progressive disease (PD) was also feasible when applying PSA-based PCWG3 (19 mo vs. 9 mo for non-PD and PD, respectively; HR, 2.29; 95% CI, 1.03-5.09; P = 0.01) but slightly failed when applying RECIP 1.0 (P = 0.08). A combination of both response systems (PCWG3 and RECIP 1.0), however, yielded the best discrimination between individuals without versus those with PD (19 mo vs. 8 mo; HR, 2.78; 95% CI, 1.32-5.86; P = 0.002). Conclusion: In patients with mCRPC treated with RLT and imaged with [18F]PSMA-1007, frameworks integrating both the biochemical (PCWG3) and PET-based response (RECIP 1.0) may best assist in identifying subjects prone to disease progression.
Asunto(s)
Niacinamida , Oligopéptidos , Antígeno Prostático Específico , Neoplasias de la Próstata Resistentes a la Castración , Urea , Humanos , Masculino , Dipéptidos/efectos adversos , Compuestos Heterocíclicos con 1 Anillo/efectos adversos , Lutecio , Niacinamida/análogos & derivados , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Pronóstico , Neoplasias de la Próstata Resistentes a la Castración/diagnóstico por imagen , Neoplasias de la Próstata Resistentes a la Castración/radioterapia , Estudios Retrospectivos , Resultado del Tratamiento , Urea/análogos & derivadosRESUMEN
177Lu-labeled prostate-specific membrane antigen (PSMA) radioligand therapy effectively treats metastatic castration-resistant prostate cancer. Patients requiring treatment, and consequently the number of theranostic centers, are expected to increase significantly after Food and Drug Administration and European Medicines Agency approval. This requires standardization or harmonization among theranostic centers. The aim of this study was to assess operational differences and similarities among 177Lu-PSMA treatment centers. Methods: A questionnaire comprising 62 items, designed by a core team of 5 physicians and externally reviewed by international experts, was developed. Study participants were asked to provide answers about their center, patient selection, radiopharmaceuticals, clinical assessment before and after 177Lu-PSMA treatments, laboratory values, treatment discontinuation, posttreatment imaging, and general information. An invitation e-mail to participate in the study was sent in June 2022. Duplicates were removed to allow for only one valid response per center. Results: Ninety-five of 211 (45%) contacted centers completed the questionnaire. Most participating centers were in Europe (51%), followed by America (22%) and Asia (22%). During the 12 mo before this study, a total of 5,906 patients received 177Lu-PSMA therapy at the 95 participating centers. Most of these patients were treated in Europe (2,840/5,906; 48%), followed by Asia (1,313/5,906; 22%) and Oceania (1,225/5,906; 21%). PSMA PET eligibility for 177Lu-PSMA was determined most frequently using 68Ga-PSMA-11 (77%). Additional pretherapy imaging included 18F-FDG PET/CT, CT, renal scintigraphy, and bone scintigraphy at 41 (49%), 27 (32%), 25 (30%), and 13 (15%), respectively, of the 84 centers for clinical standard of care, compassionate care, or local research protocols and 11 (26%), 25 (60%), 9 (21%), and 28 (67%), respectively, of the 42 centers for industry-sponsored trials. PSMA PET eligibility criteria included subjective qualitative assessment of PSMA positivity at 33% of centers, VISION criteria at 23%, and TheraP criteria at 13%. The mean standard injected activity per cycle was 7.3 GBq (range, 5.5-11.1 GBq). Sixty-two (65%) centers applied standardized response assessment criteria, and PSMA PET Progression Criteria were the most applied (37%). Conclusion: Results from this international survey revealed interinstitutional differences in several aspects of 177Lu-PSMA radionuclide therapy, including patient selection, administered activity, and the response assessment strategy. Standardization or harmonization of protocols and dedicated training are desirable in anticipation of increasing numbers of patients and theranostic centers.
Asunto(s)
Tomografía Computarizada por Tomografía de Emisión de Positrones , Medicina de Precisión , Estados Unidos , Masculino , Humanos , Europa (Continente) , Radioisótopos de GalioRESUMEN
This study aimed to assess the accuracy of intraprostatic tumor volume measurements on prostate-specific membrane antigen-targeted 18F-DCFPyL PET/CT made with various segmentation methods. An accurate understanding of tumor volumes versus segmentation techniques is critical for therapy planning, such as radiation dose volume determination and response assessment. Methods: Twenty-five men with clinically localized, high-risk prostate cancer were imaged with 18F-DCFPyL PET/CT before radical prostatectomy. The tumor volumes and tumor-to-prostate ratios (TPRs) of dominant intraprostatic foci of uptake were determined using semiautomatic segmentation (applying SUVmax percentage [SUV%] thresholds of SUV30%-SUV70%), adaptive segmentation (using adaptive segmentation percentage [A%] thresholds of A30%-A70%), and manual contouring. The histopathologic tumor volume (TV-Histo) served as the reference standard. The significance of differences between TV-Histo and PET-based tumor volume were assessed using the paired-sample Wilcoxon signed-rank test. The Spearman correlation coefficient was used to establish the strength of the association between TV-Histo and PET-derived tumor volume. Results: Median TV-Histo was 2.03 cm3 (interquartile ratio [IQR], 1.16-3.36 cm3), and median TPR was 10.16%. The adaptive method with an A40% threshold most closely determined the tumor volume, with a median difference of +0.19 (IQR, -0.71 to +2.01) and a median relative difference of +7.6%. The paired-sample Wilcoxon test showed no significant difference in PET-derived tumor volume and TV-Histo using A40%, A50%, SUV40%, and SUV50% threshold segmentation algorithms (P > 0.05). For both threshold-based segmentation methods, use of higher thresholds (e.g., SUV60% or SUV70% and A50%-A70%) resulted in underestimation of tumor volumes, and use of lower thresholds (e.g., SUV30% or SUV40% and A30%) resulted in overestimation of tumor volumes relative to TV-Histo and TPR. Manual segmentation overestimated the tumor volume, with a median difference of +2.49 (IQR, 0.42-4.11) and a median relative difference of +130%. Conclusion: Segmentation of intraprostatic tumor volume and TPR with an adaptive segmentation approach most closely approximates TV-Histo. This information might be used to guide the primary treatment of men with clinically localized, high-risk prostate cancer.
Asunto(s)
Tomografía Computarizada por Tomografía de Emisión de Positrones , Neoplasias de la Próstata , Masculino , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Próstata/patología , Neoplasias de la Próstata/patología , Prostatectomía , AlgoritmosRESUMEN
Prostate-specific membrane antigen (PSMA)-targeted PET agents have revolutionized the care of patients with prostate cancer, supplanting traditional methods of imaging prostate cancer, and improving the selection and delivery of therapies. This has led to a rapid expansion in both the number of PSMA PET scans performed and the imaging specialists required to interpret those scans. To aid those imagers and clinicians who are new to the interpretation of PSMA PET, this review provides an overview of the interpretation of PSMA PET/CT imaging and pearls for overcoming commonly encountered pitfalls. We discuss the physiologic distribution of the clinically available PSMA-targeted radiotracers, the commonly encountered patterns of prostate cancer spread, as well as the benign and malignant mimics of prostate cancer. Additionally, we review the standardized PSMA PET reporting systems and the role of PSMA in selecting appropriate patients for PSMA-targeted therapies.
Asunto(s)
Tomografía Computarizada por Tomografía de Emisión de Positrones , Neoplasias de la Próstata , Masculino , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Diagnóstico por Imagen , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patologíaRESUMEN
Most Prostate Specific Membrane Antigens (PSMAs) targeting small molecules accumulate in the salivary glands (SGs), raising concerns about SG toxicity, especially after repeated therapies or therapy with 225Ac-labeled ligands. SG toxicity is assessed clinically by the severity of patient-reported xerostomia, but this parameter can be challenging to objectively quantify. Therefore, we explored the feasibility of using SG volume as a biomarker for toxicity. In 21 patients with late-stage metastatic resistant prostate cancer (mCRPC), the PSMA volume and ligand uptake of SG were analyzed retrospectively before and after two cycles of 177Lu-PSMA (LuPSMA; cohort A) and before and after one cycle of 225Ac-PSMA-617 (AcPSMA, cohort B). Mean Volume-SG in cohort A was 59 ± 13 vs. 54 ± 16 mL (-10%, p = 0.4), and in cohort B, it was 50 ± 13 vs. 40 ± 11 mL (-20%, p = 0.007), respectively. A statistically significant decrease in the activity concentration in the SG was only observed in group B (SUVmean: 9.2 ± 2.8 vs. 5.3 ± 1.8, p < 0.0001; vs. A: SUVmean: 11.2 ± 3.3 vs. 11.1 ± 3.5, p = 0.8). SG volume and PSMA-ligand uptake are promising markers to monitor the SG toxicity after a PSMA RLT.
Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Xerostomía , Humanos , Masculino , Compuestos Heterocíclicos con 1 Anillo/uso terapéutico , Ligandos , Lutecio/uso terapéutico , Antígeno Prostático Específico , Neoplasias de la Próstata Resistentes a la Castración/patología , Estudios Retrospectivos , Glándulas Salivales/patología , Resultado del TratamientoRESUMEN
BACKGROUND: PSMA expression is influenced by hormonal status. We evaluated changes in PSA and whole-body 68Ga-PSMA-11 PET/CT (WB-PSMA PET) after initiation of androgen receptor signaling inhibitors (ARSi). METHODS: Prospectively enrolled patients with metastatic castration-resistant prostate cancer (mCRPC) initiating ARSi underwent serial PSA measurements and WB-PSMA PET at baseline, 1-week, and 3-months post-ARSi. We correlated WB-PSMA PET metrics and PSA kinetics after ARSi to 1-year clinical outcome. RESULTS: Due to low enrollment rate, the study was closed before reaching the recruitment goal of 30 patients. Nine patients were enrolled. At 1-year, unfavorable outcome was documented in 6/9 (66%) patients. Nine/9 patients completed PSMA PET at 1-week, 5/9 at 3-months. Changes in PSA, PSMA-VOL, SUVmean and SUVmax were - 12%, + 5%, + 3%, and + 10% at 1-week, - 42%, - 16%, - 15% and - 17% at 3-months, respectively. CONCLUSIONS: Our prospective trial involving 9 mCRPC patients initiating ARSi did not show significant modulation of PSMA expression measured on WB-PSMA PET at 1-week. This study was registered on clinicaltrials.gov (NCT04279561).