Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Int J Mol Sci ; 25(14)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39063034

RESUMEN

Duchenne and Becker muscular dystrophies, caused by pathogenic variants in DMD, are the most common inherited neuromuscular conditions in childhood. These diseases follow an X-linked recessive inheritance pattern, and mainly males are affected. The most prevalent pathogenic variants in the DMD gene are copy number variants (CNVs), and most patients achieve their genetic diagnosis through Multiplex Ligation-dependent Probe Amplification (MLPA) or exome sequencing. Here, we investigated a female patient presenting with muscular dystrophy who remained genetically undiagnosed after MLPA and exome sequencing. RNA sequencing (RNAseq) from the patient's muscle biopsy identified an 85% reduction in DMD expression compared to 116 muscle samples included in the cohort. A de novo balanced translocation between chromosome 17 and the X chromosome (t(X;17)(p21.1;q23.2)) disrupting the DMD and BCAS3 genes was identified through trio whole genome sequencing (WGS). The combined analysis of RNAseq and WGS played a crucial role in the detection and characterisation of the disease-causing variant in this patient, who had been undiagnosed for over two decades. This case illustrates the diagnostic odyssey of female DMD patients with complex structural variants that are not detected by current panel or exome sequencing analysis.


Asunto(s)
Cromosomas Humanos X , Distrofina , Genómica , Distrofia Muscular de Duchenne , Translocación Genética , Humanos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/diagnóstico , Femenino , Distrofina/genética , Cromosomas Humanos X/genética , Genómica/métodos , Variaciones en el Número de Copia de ADN , Secuenciación del Exoma , Transcriptoma/genética , Cromosomas Humanos Par 17/genética
2.
Nat Commun ; 15(1): 5534, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951512

RESUMEN

Stratified medicine holds great promise to tailor treatment to the needs of individual patients. While genetics holds great potential to aid patient stratification, it remains a major challenge to operationalize complex genetic risk factor profiles to deconstruct clinical heterogeneity. Contemporary approaches to this problem rely on polygenic risk scores (PRS), which provide only limited clinical utility and lack a clear biological foundation. To overcome these limitations, we develop the CASTom-iGEx approach to stratify individuals based on the aggregated impact of their genetic risk factor profiles on tissue specific gene expression levels. The paradigmatic application of this approach to coronary artery disease or schizophrenia patient cohorts identified diverse strata or biotypes. These biotypes are characterized by distinct endophenotype profiles as well as clinical parameters and are fundamentally distinct from PRS based groupings. In stark contrast to the latter, the CASTom-iGEx strategy discovers biologically meaningful and clinically actionable patient subgroups, where complex genetic liabilities are not randomly distributed across individuals but rather converge onto distinct disease relevant biological processes. These results support the notion of different patient biotypes characterized by partially distinct pathomechanisms. Thus, the universally applicable approach presented here has the potential to constitute an important component of future personalized medicine paradigms.


Asunto(s)
Enfermedad de la Arteria Coronaria , Predisposición Genética a la Enfermedad , Herencia Multifactorial , Esquizofrenia , Humanos , Esquizofrenia/genética , Herencia Multifactorial/genética , Predisposición Genética a la Enfermedad/genética , Enfermedad de la Arteria Coronaria/genética , Factores de Riesgo , Femenino , Medicina de Precisión , Masculino , Estudio de Asociación del Genoma Completo , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple
3.
Mol Genet Metab ; 142(3): 108511, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38878498

RESUMEN

The diagnosis of Mendelian disorders has notably advanced with integration of whole exome and genome sequencing (WES and WGS) in clinical practice. However, challenges in variant interpretation and uncovered variants by WES still leave a substantial percentage of patients undiagnosed. In this context, integrating RNA sequencing (RNA-seq) improves diagnostic workflows, particularly for WES inconclusive cases. Additionally, functional studies are often necessary to elucidate the impact of prioritized variants on gene expression and protein function. Our study focused on three unrelated male patients (P1-P3) with ATP6AP1-CDG (congenital disorder of glycosylation), presenting with intellectual disability and varying degrees of hepatopathy, glycosylation defects, and an initially inconclusive diagnosis through WES. Subsequent RNA-seq was pivotal in identifying the underlying genetic causes in P1 and P2, detecting ATP6AP1 underexpression and aberrant splicing. Molecular studies in fibroblasts confirmed these findings and identified the rare intronic variants c.289-233C > T and c.289-289G > A in P1 and P2, respectively. Trio-WGS also revealed the variant c.289-289G > A in P3, which was a de novo change in both patients. Functional assays expressing the mutant alleles in HAP1 cells demonstrated the pathogenic impact of these variants by reproducing the splicing alterations observed in patients. Our study underscores the role of RNA-seq and WGS in enhancing diagnostic rates for genetic diseases such as CDG, providing new insights into ATP6AP1-CDG molecular bases by identifying the first two deep intronic variants in this X-linked gene. Additionally, our study highlights the need to integrate RNA-seq and WGS, followed by functional validation, in routine diagnostics for a comprehensive evaluation of patients with an unidentified molecular etiology.


Asunto(s)
Intrones , ARN Mensajero , Humanos , Masculino , Intrones/genética , ARN Mensajero/genética , ATPasas de Translocación de Protón Vacuolares/genética , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/diagnóstico , Trastornos Congénitos de Glicosilación/patología , Mutación , Secuenciación Completa del Genoma , Secuenciación del Exoma , Análisis de Secuencia de ARN , Discapacidad Intelectual/genética , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/patología , Niño , Empalme del ARN/genética , Preescolar
4.
HGG Adv ; 5(3): 100318, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38872308

RESUMEN

The high heritability of amyotrophic lateral sclerosis (ALS) contrasts with its low molecular diagnosis rate post-genetic testing, pointing to potential undiscovered genetic factors. To aid the exploration of these factors, we introduced EpiOut, an algorithm to identify chromatin accessibility outliers that are regions exhibiting divergent accessibility from the population baseline in a single or few samples. Annotation of accessible regions with histone chromatin immunoprecipitation sequencing and Hi-C indicates that outliers are concentrated in functional loci, especially among promoters interacting with active enhancers. Across different omics levels, outliers are robustly replicated, and chromatin accessibility outliers are reliable predictors of gene expression outliers and aberrant protein levels. When promoter accessibility does not align with gene expression, our results indicate that molecular aberrations are more likely to be linked to post-transcriptional regulation rather than transcriptional regulation. Our findings demonstrate that the outlier detection paradigm can uncover dysregulated regions in rare diseases. EpiOut is available at github.com/uci-cbcl/EpiOut.


Asunto(s)
Esclerosis Amiotrófica Lateral , Cromatina , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Humanos , Cromatina/metabolismo , Cromatina/genética , Regiones Promotoras Genéticas/genética , Algoritmos , Regulación de la Expresión Génica , Secuenciación de Inmunoprecipitación de Cromatina , Histonas/metabolismo , Histonas/genética
5.
Genome Med ; 16(1): 70, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769532

RESUMEN

BACKGROUND: Rare oncogenic driver events, particularly affecting the expression or splicing of driver genes, are suspected to substantially contribute to the large heterogeneity of hematologic malignancies. However, their identification remains challenging. METHODS: To address this issue, we generated the largest dataset to date of matched whole genome sequencing and total RNA sequencing of hematologic malignancies from 3760 patients spanning 24 disease entities. Taking advantage of our dataset size, we focused on discovering rare regulatory aberrations. Therefore, we called expression and splicing outliers using an extension of the workflow DROP (Detection of RNA Outliers Pipeline) and AbSplice, a variant effect predictor that identifies genetic variants causing aberrant splicing. We next trained a machine learning model integrating these results to prioritize new candidate disease-specific driver genes. RESULTS: We found a median of seven expression outlier genes, two splicing outlier genes, and two rare splice-affecting variants per sample. Each category showed significant enrichment for already well-characterized driver genes, with odds ratios exceeding three among genes called in more than five samples. On held-out data, our integrative modeling significantly outperformed modeling based solely on genomic data and revealed promising novel candidate driver genes. Remarkably, we found a truncated form of the low density lipoprotein receptor LRP1B transcript to be aberrantly overexpressed in about half of hairy cell leukemia variant (HCL-V) samples and, to a lesser extent, in closely related B-cell neoplasms. This observation, which was confirmed in an independent cohort, suggests LRP1B as a novel marker for a HCL-V subclass and a yet unreported functional role of LRP1B within these rare entities. CONCLUSIONS: Altogether, our census of expression and splicing outliers for 24 hematologic malignancy entities and the companion computational workflow constitute unique resources to deepen our understanding of rare oncogenic events in hematologic cancers.


Asunto(s)
Neoplasias Hematológicas , Transcriptoma , Humanos , Neoplasias Hematológicas/genética , Empalme del ARN , Regulación Neoplásica de la Expresión Génica , Oncogenes , Perfilación de la Expresión Génica , Receptores de LDL/genética
6.
medRxiv ; 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38746462

RESUMEN

Solve-RD is a pan-European rare disease (RD) research program that aims to identify disease-causing genetic variants in previously undiagnosed RD families. We utilised 10-fold coverage HiFi long-read sequencing (LRS) for detecting causative structural variants (SVs), single nucleotide variants (SNVs), insertion-deletions (InDels), and short tandem repeat (STR) expansions in extensively studied RD families without clear molecular diagnoses. Our cohort includes 293 individuals from 114 genetically undiagnosed RD families selected by European Rare Disease Network (ERN) experts. Of these, 21 families were affected by so-called 'unsolvable' syndromes for which genetic causes remain unknown, and 93 families with at least one individual affected by a rare neurological, neuromuscular, or epilepsy disorder without genetic diagnosis despite extensive prior testing. Clinical interpretation and orthogonal validation of variants in known disease genes yielded thirteen novel genetic diagnoses due to de novo and rare inherited SNVs, InDels, SVs, and STR expansions. In an additional four families, we identified a candidate disease-causing SV affecting several genes including an MCF2 / FGF13 fusion and PSMA3 deletion. However, no common genetic cause was identified in any of the 'unsolvable' syndromes. Taken together, we found (likely) disease-causing genetic variants in 13.0% of previously unsolved families and additional candidate disease-causing SVs in another 4.3% of these families. In conclusion, our results demonstrate the added value of HiFi long-read genome sequencing in undiagnosed rare diseases.

7.
Genome Biol ; 25(1): 83, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38566111

RESUMEN

BACKGROUND: The rise of large-scale multi-species genome sequencing projects promises to shed new light on how genomes encode gene regulatory instructions. To this end, new algorithms are needed that can leverage conservation to capture regulatory elements while accounting for their evolution. RESULTS: Here, we introduce species-aware DNA language models, which we trained on more than 800 species spanning over 500 million years of evolution. Investigating their ability to predict masked nucleotides from context, we show that DNA language models distinguish transcription factor and RNA-binding protein motifs from background non-coding sequence. Owing to their flexibility, DNA language models capture conserved regulatory elements over much further evolutionary distances than sequence alignment would allow. Remarkably, DNA language models reconstruct motif instances bound in vivo better than unbound ones and account for the evolution of motif sequences and their positional constraints, showing that these models capture functional high-order sequence and evolutionary context. We further show that species-aware training yields improved sequence representations for endogenous and MPRA-based gene expression prediction, as well as motif discovery. CONCLUSIONS: Collectively, these results demonstrate that species-aware DNA language models are a powerful, flexible, and scalable tool to integrate information from large compendia of highly diverged genomes.


Asunto(s)
ADN , Secuencias Reguladoras de Ácidos Nucleicos , Sitios de Unión , Alineación de Secuencia , Algoritmos , Secuencia Conservada/genética , Evolución Molecular
8.
Sci Rep ; 14(1): 5768, 2024 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459123

RESUMEN

The SARS-CoV-2 pandemic has highlighted the need to better define in-hospital transmissions, a need that extends to all other common infectious diseases encountered in clinical settings. To evaluate how whole viral genome sequencing can contribute to deciphering nosocomial SARS-CoV-2 transmission 926 SARS-CoV-2 viral genomes from 622 staff members and patients were collected between February 2020 and January 2021 at a university hospital in Munich, Germany, and analysed along with the place of work, duration of hospital stay, and ward transfers. Bioinformatically defined transmission clusters inferred from viral genome sequencing were compared to those inferred from interview-based contact tracing. An additional dataset collected at the same time at another university hospital in the same city was used to account for multiple independent introductions. Clustering analysis of 619 viral genomes generated 19 clusters ranging from 3 to 31 individuals. Sequencing-based transmission clusters showed little overlap with those based on contact tracing data. The viral genomes were significantly more closely related to each other than comparable genomes collected simultaneously at other hospitals in the same city (n = 829), suggesting nosocomial transmission. Longitudinal sampling from individual patients suggested possible cross-infection events during the hospital stay in 19.2% of individuals (14 of 73 individuals). Clustering analysis of SARS-CoV-2 whole genome sequences can reveal cryptic transmission events missed by classical, interview-based contact tracing, helping to decipher in-hospital transmissions. These results, in line with other studies, advocate for viral genome sequencing as a pathogen transmission surveillance tool in hospitals.


Asunto(s)
COVID-19 , Infección Hospitalaria , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , COVID-19/genética , Genoma Viral/genética , Infección Hospitalaria/epidemiología , Infección Hospitalaria/genética , Hospitales Universitarios
9.
Mol Syst Biol ; 20(5): 506-520, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38491213

RESUMEN

Codon optimality is a major determinant of mRNA translation and degradation rates. However, whether and through which mechanisms its effects are regulated remains poorly understood. Here we show that codon optimality associates with up to 2-fold change in mRNA stability variations between human tissues, and that its effect is attenuated in tissues with high energy metabolism and amplifies with age. Mathematical modeling and perturbation data through oxygen deprivation and ATP synthesis inhibition reveal that cellular energy variations non-uniformly alter the effect of codon usage. This new mode of codon effect regulation, independent of tRNA regulation, provides a fundamental mechanistic link between cellular energy metabolism and eukaryotic gene expression.


Asunto(s)
Codón , Metabolismo Energético , Estabilidad del ARN , ARN Mensajero , Humanos , Metabolismo Energético/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Codón/genética , Uso de Codones , Biosíntesis de Proteínas , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Adenosina Trifosfato/metabolismo , Regulación de la Expresión Génica
10.
Nat Commun ; 15(1): 151, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167372

RESUMEN

Unlike for DNA and RNA, accurate and high-throughput sequencing methods for proteins are lacking, hindering the utility of proteomics in applications where the sequences are unknown including variant calling, neoepitope identification, and metaproteomics. We introduce Spectralis, a de novo peptide sequencing method for tandem mass spectrometry. Spectralis leverages several innovations including a convolutional neural network layer connecting peaks in spectra spaced by amino acid masses, proposing fragment ion series classification as a pivotal task for de novo peptide sequencing, and a peptide-spectrum confidence score. On spectra for which database search provided a ground truth, Spectralis surpassed 40% sensitivity at 90% precision, nearly doubling state-of-the-art sensitivity. Application to unidentified spectra confirmed its superiority and showcased its applicability to variant calling. Altogether, these algorithmic innovations and the substantial sensitivity increase in the high-precision range constitute an important step toward broadly applicable peptide sequencing.


Asunto(s)
Aprendizaje Profundo , Algoritmos , Análisis de Secuencia de Proteína/métodos , Péptidos/química , Secuencia de Aminoácidos
11.
bioRxiv ; 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38260253

RESUMEN

Aging and neurodegeneration entail diverse cellular and molecular hallmarks. Here, we studied the effects of aging on the transcriptome, translatome, and multiple layers of the proteome in the brain of a short-lived killifish. We reveal that aging causes widespread reduction of proteins enriched in basic amino acids that is independent of mRNA regulation, and it is not due to impaired proteasome activity. Instead, we identify a cascade of events where aberrant translation pausing leads to reduced ribosome availability resulting in proteome remodeling independently of transcriptional regulation. Our research uncovers a vulnerable point in the aging brain's biology - the biogenesis of basic DNA/RNA binding proteins. This vulnerability may represent a unifying principle that connects various aging hallmarks, encompassing genome integrity and the biosynthesis of macromolecules.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA