Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Plant Physiol ; 191(1): 542-557, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36135791

RESUMEN

Leaves of shade-avoiding plants such as Arabidopsis (Arabidopsis thaliana) change their growth pattern and position in response to low red to far-red ratios (LRFRs) encountered in dense plant communities. Under LRFR, transcription factors of the phytochrome-interacting factor (PIF) family are derepressed. PIFs induce auxin production, which is required for promoting leaf hyponasty, thereby favoring access to unfiltered sunlight. Abscisic acid (ABA) has also been implicated in the control of leaf hyponasty, with gene expression patterns suggesting that LRFR regulates the ABA response. Here, we show that LRFR leads to a rapid increase in ABA levels in leaves. Changes in ABA levels depend on PIFs, which regulate the expression of genes encoding isoforms of the enzyme catalyzing a rate-limiting step in ABA biosynthesis. Interestingly, ABA biosynthesis and signaling mutants have more erect leaves than wild-type Arabidopsis under white light but respond less to LRFR. Consistent with this, ABA application decreases leaf angle under white light; however, this response is inhibited under LRFR. Tissue-specific interference with ABA signaling indicates that an ABA response is required in different cell types for LRFR-induced hyponasty. Collectively, our data indicate that LRFR triggers rapid PIF-mediated ABA production. ABA plays a different role in controlling hyponasty under white light than under LRFR. Moreover, ABA exerts its activity in multiple cell types to control leaf position.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Fitocromo/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
Nat Commun ; 13(1): 5659, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36216814

RESUMEN

Plant growth ultimately depends on fixed carbon, thus the available light for photosynthesis. Due to canopy light absorption properties, vegetative shade combines low blue (LB) light and a low red to far-red ratio (LRFR). In shade-avoiding plants, these two conditions independently trigger growth adaptations to enhance light access. However, how these conditions, differing in light quality and quantity, similarly promote hypocotyl growth remains unknown. Using RNA sequencing we show that these two features of shade trigger different transcriptional reprogramming. LB induces starvation responses, suggesting a switch to a catabolic state. Accordingly, LB promotes autophagy. In contrast, LRFR induced anabolism including expression of sterol biosynthesis genes in hypocotyls in a manner dependent on PHYTOCHROME-INTERACTING FACTORs (PIFs). Genetic analyses show that the combination of sterol biosynthesis and autophagy is essential for hypocotyl growth promotion in vegetative shade. We propose that vegetative shade enhances hypocotyl growth by combining autophagy-mediated recycling and promotion of specific lipid biosynthetic processes.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Autofagia/genética , Carbono/metabolismo , Membrana Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Hipocótilo/genética , Luz , Lípidos , Fitocromo/metabolismo , Esteroles/metabolismo
3.
Methods Mol Biol ; 2297: 21-31, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33656666

RESUMEN

The presence of neighbor or overtopping plants is perceived by changes in light quality, which lead to several growth and developmental changes known as shade avoidance syndrome (SAS). Among them, the analysis of hypocotyl elongation is an important SAS physiological output that has been successfully used to investigate photoreceptors and downstream signaling components. Here we describe the experimental setup and growth conditions used to investigate photoreceptors and their signaling mechanisms through the analysis of hypocotyl elongation in laboratory, using simulated low R/FR ratio, low blue light, and true/deep shade conditions.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Criptocromos/metabolismo , Hipocótilo/crecimiento & desarrollo , Fitocromo/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Hipocótilo/metabolismo , Luz , Fenotipo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Transducción de Señal
4.
New Phytol ; 226(1): 50-58, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31705802

RESUMEN

In response to elevated ambient temperature Arabidopsis thaliana seedlings display a thermomorphogenic response that includes elongation of hypocotyls and petioles. Phytochrome B and cryptochrome 1 are two photoreceptors also playing a role in thermomorphogenesis. Downstream of both environmental sensors PHYTOCHROME INTERACTING FACTOR 4 (PIF4) is essential to trigger this response at least in part through the production of the growth promoting hormone auxin. Using a genetic approach, we identified PHYTOCHROME INTERACTING FACTOR 7 (PIF7) as a novel player for thermomorphogenesis and compared the phenotypes of pif7 and pif4 mutants. We investigated the role of PIF7 during temperature-regulated gene expression and the regulation of PIF7 transcript and protein by temperature. Furthermore, pif7 and pif4 loss-of-function mutants were similarly unresponsive to increased temperature. This included hypocotyl elongation and induction of genes encoding auxin biosynthetic or signalling proteins. PIF7 bound to the promoters of auxin biosynthesis and signalling genes. In response to temperature elevation PIF7 transcripts decreased while PIF7 protein levels increased rapidly. Our results reveal the importance of PIF7 for thermomorphogenesis and indicate that PIF7 and PIF4 likely depend on each other possibly by forming heterodimers. Elevated temperature rapidly enhances PIF7 protein accumulation, which may contribute to the thermomorphogenic response.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Unión al ADN , Factor VII , Regulación de la Expresión Génica de las Plantas , Hipocótilo/metabolismo , Fitocromo/metabolismo , Plantones/metabolismo , Temperatura
5.
Nat Commun ; 10(1): 4005, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31488833

RESUMEN

Changes in light quality indicative of competition for this essential resource influence plant growth and developmental transitions; however, little is known about neighbor proximity-induced acceleration of reproduction. Phytochrome B (phyB) senses light cues from plant competitors, ultimately leading to the expression of the floral inducers FLOWERING LOCUS T (FT) and TWIN SISTER of FT (TSF). Here we show that PHYTOCHROME INTERACTING FACTORs 4, 5 and 7 (PIF4, PIF5 and PIF7) mediate neighbor proximity-induced flowering, with PIF7 playing a prominent role. These transcriptional regulators act directly downstream of phyB to promote expression of FT and TSF. Neighbor proximity enhances PIF accumulation towards the end of the day, coinciding with enhanced floral inducer expression. We present evidence supporting direct PIF-regulated TSF expression. The relevance of our findings is illustrated by the prior identification of FT, TSF and PIF4 as loci underlying flowering time regulation in natural conditions.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Unión a Fosfatidiletanolamina/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Luz , Proteínas de Unión a Fosfatidiletanolamina/genética , Fotoperiodo , Fitocromo B/metabolismo , Desarrollo de la Planta , Reproducción , Nicotiana
6.
Curr Biol ; 26(24): 3280-3287, 2016 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-27889263

RESUMEN

Phototropism is an asymmetric growth response enabling plants to optimally position their organs. In flowering plants, the phototropin (phot) blue light receptors are essential to detect light gradients. In etiolated seedlings, the phototropic response is enhanced by the red/far-red (R/FR)-sensing phytochromes (phy) with a predominant function of phyA. In this study, we analyzed the influence of the phytochromes on phototropism in green (de-etiolated) Arabidopsis seedlings. Our experiments in the laboratory and outdoors revealed that, in open environments (high R/FR ratio), phyB inhibits phototropism. In contrast, under foliar shade, where access to direct sunlight becomes important, the phototropic response was strong. phyB modulates phototropism, depending on the R/FR ratio, by controlling the activity of three basic-helix-loop-helix (bHLH) transcription factors of the PHYTOCHROME INTERACTING FACTORs (PIFs) family. Promotion of phototropism depends on PIF-mediated induction of several members of the YUCCA gene family, leading to auxin production in the cotyledons. Our study identifies PIFs and YUCCAs as novel molecular players promoting phototropism in photoautotrophic, but not etiolated, seedlings. Moreover, our findings reveal fundamental differences in the phytochrome-phototropism crosstalk in etiolated versus green seedlings. We propose that in natural conditions where the light environment is not homogeneous, the uncovered phytochrome-phototropin co-action is important for plants to adapt their growth strategy to optimize photosynthetic light capture.


Asunto(s)
Arabidopsis/fisiología , Ácidos Indolacéticos/metabolismo , Luz , Fototropismo/fisiología , Fitocromo B/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Plantones/fisiología
7.
Annu Rev Plant Biol ; 67: 513-37, 2016 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-26905653

RESUMEN

Light is crucial for plant life, and perception of the light environment dictates plant growth, morphology, and developmental changes. Such adjustments in growth and development in response to light conditions are often established through changes in hormone levels and signaling. This review discusses examples of light-regulated processes throughout a plant's life cycle for which it is known how light signals lead to hormonal regulation. Light acts as an important developmental switch in germination, photomorphogenesis, and transition to flowering, and light cues are essential to ensure light capture through architectural changes during phototropism and the shade avoidance response. In describing well-established links between light perception and hormonal changes, we aim to give insight into the mechanisms that enable plants to thrive in variable light environments.


Asunto(s)
Luz , Fotosíntesis , Procesos Fototróficos , Fototropismo , Desarrollo de la Planta , Reguladores del Crecimiento de las Plantas , Plantas , Flores , Germinación , Transducción de Señal
8.
Plant J ; 84(5): 949-62, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26466761

RESUMEN

Distinct molecular mechanisms integrate changes in ambient temperature into the genetic pathways that govern flowering time in Arabidopsis thaliana. Temperature-dependent eviction of the histone variant H2A.Z from nucleosomes has been suggested to facilitate the expression of FT by PIF4 at elevated ambient temperatures. Here we show that, in addition to PIF4, PIF3 and PIF5, but not PIF1 and PIF6, can promote flowering when expressed specifically in phloem companion cells (PCC), where they can induce FT and its close paralog, TSF. However, despite their strong potential to promote flowering, genetic analyses suggest that the PIF genes seem to have only a minor role in adjusting flowering in response to photoperiod or high ambient temperature. In addition, loss of PIF function only partially suppressed the early flowering phenotype and FT expression of the arp6 mutant, which is defective in H2A.Z deposition. In contrast, the chemical inhibition of gibberellic acid (GA) biosynthesis resulted in a strong attenuation of early flowering and FT expression in arp6. Furthermore, GA was able to induce flowering at low temperature (15°C) independently of FT, TSF, and the PIF genes, probably directly at the shoot apical meristem. Together, our results suggest that the timing of the floral transition in response to ambient temperature is more complex than previously thought and that GA signaling might play a crucial role in this process.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Giberelinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Flores/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Giberelinas/farmacología , Histonas/metabolismo , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/fisiología , Nucleosomas/metabolismo , Proteínas de Unión a Fosfatidiletanolamina/genética , Proteínas de Unión a Fosfatidiletanolamina/metabolismo , Proteínas de Unión a Fosfatidiletanolamina/fisiología , Fotoperiodo , Reguladores del Crecimiento de las Plantas/farmacología , Transducción de Señal , Temperatura
9.
Curr Opin Neurobiol ; 34: 46-53, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25638281

RESUMEN

Plants must constantly adapt to a changing light environment in order to optimize energy conversion through the process of photosynthesis and to limit photodamage. In addition, plants use light cues for timing of key developmental transitions such as initiation of reproduction (transition to flowering). Plants are equipped with a battery of photoreceptors enabling them to sense a very broad light spectrum spanning from UV-B to far-red wavelength (280-750nm). In this review we briefly describe the different families of plant photosensory receptors and the mechanisms by which they transduce environmental information to influence numerous aspects of plant growth and development throughout their life cycle.


Asunto(s)
Ambiente , Fotorreceptores de Plantas/fisiología , Plantas , Sensación/fisiología , Transducción de Señal/fisiología , Luz , Plantas/anatomía & histología
10.
Planta ; 230(2): 253-65, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19434422

RESUMEN

Although several glycine-rich protein (GRP) genes were isolated and characterized, very little is known about their function. The primary structure of AtGRP5 from Arabidopsis thaliana has a signal peptide followed by a region with high glycine content. In this work, green fluorescent protein fusions were obtained in order to characterize the sub-cellular localization of the AtGRP5 protein. The results indicated that this protein is the first described vacuolar GRP. Sense, antisense and RNAi transgenic A. thaliana plants were generated and analyzed phenotypically. Plants overexpressing AtGRP5 showed longer roots and an enhanced elongation of the inflorescence axis, while antisense and RNAi plants demonstrated the opposite phenotype. The analysis of a knockout T-DNA line corroborates the phenotypes obtained with the antisense and RNAi plants. Altogether, these results suggest that this vacuolar GRP could be involved in organ growth by promoting cell elongation processes.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Forma de la Célula/fisiología , Glicina/química , Plantas Modificadas Genéticamente/metabolismo , Vacuolas/metabolismo , Arabidopsis/citología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Forma de la Célula/genética , ADN Bacteriano/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Microscopía Confocal , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
11.
Planta ; 224(2): 300-14, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16397796

RESUMEN

Aerobic organisms evolved a complex antioxidant system, which protect the cells against oxidative damage caused by partially reduced oxygen intermediates, also known as reactive oxygen species. In plants, ascorbate peroxidases (EC, 1.11.1.11) catalyze the conversion of H(2)O(2) to H(2)O, using ascorbate as the specific electron donor in this enzymatic reaction. Previously, eight APx genes were identified in the rice (Oryza sativa L.) genome through in silico analysis: two cytosolic isoforms, two putative peroxisomal isoforms, and four putative chloroplastic ones. Using gene-specific probes, we confirmed the presence of the eight APx genes in the rice genome by Southern blot hybridization. Transcript accumulation analysis showed specific expression patterns for each member of the APx family according to developmental stage and in response to salt stress, revealing the complexity of the antioxidant system in plants. Finally, the subcellular localization of rice APx isoforms was determined using GFP-fusion proteins in BY-2 tobacco cells. In agreement with the initial prediction, OSAPX3 was localized in the peroxisomes. On the other hand, the OSAPX6-GFP fusion protein was found in mitochondria of the BY-2 cells, in contrast to the chloroplastic location predicted by sequence analysis. Our findings reveal the functional diversity of the rice APx genes and suggest complementation and coordination of the antioxidant defenses in different cellular compartments during development and abiotic stress.


Asunto(s)
Oryza/enzimología , Peroxidasas/metabolismo , Ascorbato Peroxidasas , Northern Blotting , Southern Blotting , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Isoenzimas/metabolismo , Oryza/efectos de los fármacos , Peroxidasas/genética , Hojas de la Planta/metabolismo , Tallos de la Planta/metabolismo , Plantas Modificadas Genéticamente , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sales (Química)/farmacología , Plantones/metabolismo , Fracciones Subcelulares/enzimología , Nicotiana/citología
12.
Genet. mol. biol ; 28(3,suppl): 529-538, Nov. 2005. ilus, tab
Artículo en Inglés | LILACS | ID: lil-440457

RESUMEN

Antioxidant metabolism protects cells from oxidative damage caused by reactive oxygen species (ROS). In plants, several enzymes act jointly to maintain redox homeostasis. Moreover, isoform diversity contributes to the fine tuning necessary for plant responses to both exogenous and endogenous signals influencing antioxidant metabolism. This study aimed to provide a comprehensive view of the major classes of antioxidant enzymes in the woody species Eucalyptus grandis. A careful survey of the FORESTs data bank revealed 36 clusters as encoding antioxidant enzymes: six clusters encoding ascorbate peroxidase (APx) isozymes, three catalase (CAT) proteins, three dehydroascorbate reductase (DHAR), two glutathione reductase (GR) isozymes, four monodehydroascorbate reductase (MDHAR), six phospholipid hydroperoxide glutathione peroxidases (PhGPx), and 12 encoding superoxide dismutases (SOD) isozymes. Phylogenetic analysis demonstrated that all clusters (identified herein) grouped with previously characterized antioxidant enzymes, corroborating the analysis performed. With respect to enzymes involved in the ascorbate-glutathione cycle, both cytosolic and chloroplastic isoforms were putatively identified. These sequences were widely distributed among the different ESTs libraries indicating a broad gene expression pattern. Overall, the data indicate the importance of antioxidant metabolism in eucalyptus


Asunto(s)
Antioxidantes/metabolismo , Eucalyptus/genética , Ascorbato Oxidasa , Catalasa , Bases de Datos Genéticas , Enzimas/metabolismo , Eucalyptus/metabolismo , Plantas/genética , Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA