Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 6865, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39127750

RESUMEN

The nanoscale fibrillar morphology, featuring long-range structural order, provides abundant interfaces for efficient exciton dissociation and high-quality pathways for effective charge transport, is a promising morphology for high performance organic solar cells. Here, we synthesize a thiophene terminated non-fullerene acceptor, L8-ThCl, to induce the fibrillization of both polymer donor and host acceptor, that surpasses the 20% efficiency milestone of organic solar cells. After adding L8-ThCl, the original weak and less continuous nanofibrils of polymer donors, i.e. PM6 or D18, are well enlarged and refined, whilst the host acceptor L8-BO also assembles into nanofibrils with enhanced structural order. By adapting the layer-by-layer deposition method, the enhanced structural order can be retained to significantly boost the power conversion efficiency, with specific values of 19.4% and 20.1% for the PM6:L8-ThCl/L8-BO:L8-ThCl and D18:L8-ThCl/L8-BO:L8-ThCl devices, with the latter being certified 20.0%, which is the highest certified efficiency reported so far for single-junction organic solar cells.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38656920

RESUMEN

Interlayer engineering is crucial for achieving efficient and stable organic solar cells (OSCs). Herein, by introducing a commercialized brominated quaternary ammonium salt, hexamethonium bromide (HB), into a perylene diimide (PDI)-structured electron transport layer (ETL), a PDINN:HB hybrid ETL with enhanced charge collection ability and environmental/operational stability is realized. Molecular dynamics simulations and Kelvin probe force microscopy indicate that strong polar bromine and amine groups can form extra interfacial dipoles in the hybrid interlayer, while X-ray photoelectron spectroscopy and electron paramagnetic resonance suggest the hybrid ETL can interact with the Ag cathode, thereby regulating the energy level arrangement at the interface. As for the results, the PDINN:HB hybrid ETL enables improved power conversion efficiency (PCE) from 17.8 to 18.4% and 18.8 to 19.4% in PM6:C5-16 bulk heterojunction- and PM6/L8-BO pseudobulk heterojunction-based OSCs, respectively. The versatility of this method is further verified by introducing a range of brominated quaternary ammonium salts into PDINN, in which a superior PCE and stability are all obtained compared to the reference device.

3.
J Am Chem Soc ; 146(17): 12011-12019, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38639467

RESUMEN

Organic photovoltaics (OPVs) suffer from a trade-off between efficient charge transport and suppressed nonradiative recombination due to the aggregation-induced luminance quenching of organic semiconductors. To resolve this grand challenge, a π-extended nonfullerene acceptor (NFA) B6Cl with large voids among the honeycomb network is designed and introduced into photovoltaic systems. We find that the presence of a small amount of (i.e., 0.5 or 1 wt %) B6Cl can compress the molecular packing of the host acceptor L8-BO, leading to shortened π-π stacking distance from 3.59 to 3.50 Å (that will improve charge transport) together with ordered alkyl chain packing (that will inhibit nonradiative energy loss due to the suppressed C-C and C-H bonds vibrations), as validated by high-energy X-ray scattering measurements. This morphology transformation ultimately results in simultaneously improved JSC, FF, and VOC of OPVs. As a result, the maximum PCEs of PM6:L8-BO and D18:L8-BO are increased from 19.1 and 19.3% to 19.8 and 20.2%, respectively, which are among the highest values for single-junction OPVs. The university of B6Cl to increase the performance of OPVs is further evidenced in a range of polymer:NFA OPVs.

4.
Small ; 20(33): e2401050, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38511580

RESUMEN

Polymeric semiconducting materials struggle to achieve fast charge mobility due to low structural order. In this work, five 1H-indene-1,3(2H)dione-benzene structured halogenated solid additives namely INB-5F, INB-3F, INB-1F, INB-1Cl, and INB-1Br with gradually varied electrostatic potential are designed and utilized to regulate the structural order of polymer donor PM6. Molecular dynamics simulations demonstrate that although the dione unit of these additives tends to adsorb on the backbone of PM6, the reduced electrostatic potential of the halogen-substituted benzene can shift the benzene interacting site from alkyl side chains to the conjugated backbone of PM6, not only leading to enhanced π-π stacking in out-of-plane but also arising new π-π stacking in in-plane together with the appearance of multiple backbone stacking in out-of-plane, consequent to the co-existence of face-on and edge-on molecular orientations. This molecular packing transformation further translates to enhanced charge transport and suppressed carrier recombination in their photovoltaics, with a maximum power conversion efficiency of 19.4% received in PM6/L8-BO layer-by-layer deposited organic solar cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA