Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Cancer Res ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39088701

RESUMEN

The development of resistance to current standard-of-care treatments, such as androgen receptor (AR) targeting therapies, remains a major challenge in the management of advanced prostate cancer. There is an urgent need for therapeutic strategies targeting key resistance drivers, such as AR variants like AR-V7 and steroidogenic enzymes like AKR1C3, to improve outcomes for patients with advanced prostate cancer. Here, we designed, synthesized, and characterized a class of LX compounds targeting both AR/AR variants and AKR1C3. Molecular docking indicated that LX compounds bound to the AKR1C3 active sites. LX1 blocked AKR1C3 enzymatic activity, suppressing the conversion of androstenedione into testosterone. LX compounds also reduced AR/AR-V7 expression and downregulated their target genes. In vitro, LX1 inhibited the growth of prostate cancer cells resistant to antiandrogens, including enzalutamide, abiraterone, apalutamide, and darolutamide. Treatment with LX1 in vivo significantly decreased tumor growth, lowered serum PSA levels, and reduced intratumoral testosterone levels, without affecting mouse body weight. Furthermore, LX1 overcame resistance to enzalutamide treatment, and the combination of LX1 with enzalutamide further suppressed tumor growth. Collectively, the dual effect of LX1 in reducing intratumoral testosterone and AR signaling, along with its synergy with standard therapies in resistant models, underscores its potential as a valuable treatment option for advanced prostate cancer.

2.
Nat Commun ; 15(1): 6626, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103353

RESUMEN

N-Myc is a key driver of neuroblastoma and neuroendocrine prostate cancer (NEPC). One potential way to circumvent the challenge of undruggable N-Myc is to target the protein homeostasis (proteostasis) system that maintains N-Myc levels. Here, we identify heat shock protein 70 (HSP70) as a top partner of N-Myc, which binds a conserved "SELILKR" motif and prevents the access of E3 ubiquitin ligase, STIP1 homology and U-box containing protein 1 (STUB1), possibly through steric hindrance. When HSP70's dwell time on N-Myc is increased by treatment with the HSP70 allosteric inhibitor, STUB1 is in close proximity with N-Myc and becomes functional to promote N-Myc ubiquitination on the K416 and K419 sites and forms polyubiquitination chains linked by the K11 and K63 sites. Notably, HSP70 inhibition significantly suppressed NEPC tumor growth, increased the efficacy of aurora kinase A (AURKA) inhibitors, and limited the expression of neuroendocrine-related pathways.


Asunto(s)
Proteínas HSP70 de Choque Térmico , Neoplasias de la Próstata , Proteostasis , Ubiquitina-Proteína Ligasas , Ubiquitinación , Masculino , Humanos , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación/efectos de los fármacos , Línea Celular Tumoral , Animales , Aurora Quinasa A/metabolismo , Aurora Quinasa A/genética , Aurora Quinasa A/antagonistas & inhibidores , Proteína Proto-Oncogénica N-Myc/metabolismo , Proteína Proto-Oncogénica N-Myc/genética , Ratones , Carcinoma Neuroendocrino/metabolismo , Carcinoma Neuroendocrino/genética , Carcinoma Neuroendocrino/tratamiento farmacológico , Carcinoma Neuroendocrino/patología , Tumores Neuroendocrinos/metabolismo , Tumores Neuroendocrinos/tratamiento farmacológico , Tumores Neuroendocrinos/genética , Tumores Neuroendocrinos/patología
3.
Oncogene ; 43(30): 2325-2337, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38877132

RESUMEN

Treatment-induced neuroendocrine prostate cancer (t-NEPC) often arises from adenocarcinoma via lineage plasticity in response to androgen receptor signaling inhibitors, such as enzalutamide. However, the specific regulators and targets involved in the transition to NEPC are not well understood. Plexin D1 (PLXND1) is a cellular receptor of the semaphorin (SEMA) family that plays important roles in modulating the cytoskeleton and cell adhesion. Here, we found that PLXND1 was highly expressed and positively correlated with neuroendocrine markers in patients with NEPC. High PLXND1 expression was associated with poorer prognosis in prostate cancer patients. Additionally, PLXND1 was upregulated and negatively regulated by androgen receptor signaling in enzalutamide-resistant cells. Knockdown or knockout of PLXND1 inhibited neural lineage pathways, thereby suppressing NEPC cell proliferation, patient derived xenograft (PDX) tumor organoid viability, and xenograft tumor growth. Mechanistically, the heat shock protein 70 (HSP70) regulated PLXND1 protein stability through degradation, and inhibition of HSP70 decreased PLXND1 expression and NEPC organoid growth. In summary, our findings indicate that PLXND1 could serve as a promising therapeutic target and molecular marker for NEPC.


Asunto(s)
Resistencia a Antineoplásicos , Humanos , Masculino , Animales , Ratones , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/tratamiento farmacológico , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Linaje de la Célula/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Plasticidad de la Célula/genética , Receptores de Superficie Celular/metabolismo , Receptores de Superficie Celular/genética , Pronóstico , Glicoproteínas de Membrana , Péptidos y Proteínas de Señalización Intracelular
4.
Res Sq ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38585965

RESUMEN

Treatment-induced neuroendocrine prostate cancer (t-NEPC) often arises from adenocarcinoma via lineage plasticity in response to androgen receptor signaling inhibitors, such as enzalutamide. However, the specific regulators and targets involved in the transition to NEPC are not well understood. Plexin D1 (PLXND1) is a cellular receptor of the semaphorin (SEMA) family that plays important roles in modulating the cytoskeleton and cell adhesion. Here, we found that PLXND1 is highly expressed and positively correlated with neuroendocrine markers in patients with NEPC. High PLXND1 expression is associated with poorer prognosis in prostate cancer patients. Additionally, PLXND1 was upregulated and negatively regulated by androgen receptor signaling in enzalutamide-resistant cells. Knockdown or knockout of PLXND1 inhibit neural lineage pathways, suppressing NEPC cell proliferation, PDX tumor organoid viability, and xenograft tumor growth. Mechanistically, the chaperone protein HSP70 regulates PLXND1 protein stability through degradation, and inhibition of HSP70 decreases PLXND1 expression and NEPC organoid growth. In summary, our findings suggest that PLXND1 could be a new therapeutic target and molecular indicator for NEPC.

5.
iScience ; 27(2): 108984, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38327800

RESUMEN

Olaparib is a pioneering PARP inhibitor (PARPi) approved for treating castration-resistant prostate cancer (CRPC) tumors harboring DNA repair defects, but clinical resistance has been documented. To study acquired resistance, we developed Olaparib-resistant (OlapR) cell lines through chronic Olaparib treatment of LNCaP and C4-2B cell lines. Here, we found that IGFBP3 is highly expressed in acquired (OlapR) and intrinsic (Rv1) models of Olaparib resistance. We show that IGFBP3 expression promotes Olaparib resistance by enhancing DNA repair capacity through activation of EGFR and DNA-PKcs. IGFBP3 depletion enhances efficacy of Olaparib by promoting DNA damage accumulation and subsequently, cell death in resistant models. Mechanistically, we show that silencing IGFBP3 or EGFR expression reduces cell viability and resensitizes OlapR cells to Olaparib treatment. Inhibition of EGFR by Gefitinib suppressed growth of OlapR cells and improved Olaparib sensitivity, thereby phenocopying IGFBP3 inhibition. Collectively, our results highlight IGFBP3 and EGFR as critical mediators of Olaparib resistance.

6.
Sci Adv ; 10(6): eadi4935, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38335292

RESUMEN

Prostate cancer (PC) develops in a microenvironment where the stromal cells modulate adjacent tumor growth and progression. Here, we demonstrated elevated levels of monoamine oxidase B (MAOB), a mitochondrial enzyme that degrades biogenic and dietary monoamines, in human PC stroma, which was associated with poor clinical outcomes of PC patients. Knockdown or overexpression of MAOB in human prostate stromal fibroblasts indicated that MAOB promotes cocultured PC cell proliferation, migration, and invasion and co-inoculated prostate tumor growth in mice. Mechanistically, MAOB induces a reactive stroma with activated marker expression, increased extracellular matrix remodeling, and acquisition of a protumorigenic phenotype through enhanced production of reactive oxygen species. Moreover, MAOB transcriptionally activates CXCL12 through Twist1 synergizing with TGFß1-dependent Smads in prostate stroma, which stimulates tumor-expressed CXCR4-Src/JNK signaling in a paracrine manner. Pharmacological inhibition of stromal MAOB restricted PC xenograft growth in mice. Collectively, these findings characterize the contribution of MAOB to PC and suggest MAOB as a potential stroma-based therapeutic target.


Asunto(s)
Monoaminooxidasa , Neoplasias de la Próstata , Animales , Humanos , Masculino , Ratones , Línea Celular Tumoral , Fibroblastos/metabolismo , Monoaminooxidasa/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Transducción de Señal , Microambiente Tumoral
7.
Cancer Res ; 84(1): 154-167, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-37847513

RESUMEN

Intraductal carcinoma of the prostate (IDC-P) is a lethal prostate cancer subtype that generally coexists with invasive high-grade prostate acinar adenocarcinoma (PAC) but exhibits distinct biological features compared with concomitant adenocarcinoma. In this study, we performed whole-exome, RNA, and DNA-methylation sequencing of IDC-P, concurrent invasive high-grade PAC lesions, and adjacent normal prostate tissues isolated from 22 radical prostatectomy specimens. Three evolutionary patterns of concurrent IDC-P and PAC were identified: early divergent, late divergent, and clonally distant. In contrast to those with a late divergent evolutionary pattern, tumors with clonally distant and early divergent evolutionary patterns showed higher genomic, epigenomic, transcriptional, and pathologic heterogeneity between IDC-P and PAC. Compared with coexisting PAC, IDC-P displayed increased expression of adverse prognosis-associated genes. Survival analysis based on an independent cohort of 505 patients with metastatic prostate cancer revealed that IDC-P carriers with lower risk International Society of Urological Pathology (ISUP) grade 1-4 adenocarcinoma displayed a castration-resistant free survival as poor as those with the highest risk ISUP grade 5 tumors that lacked concurrent IDC-P. Furthermore, IDC-P exhibited robust cell-cycle progression and androgen receptor activities, characterized by an enrichment of cellular proliferation-associated master regulators and genes involved in intratumoral androgen biosynthesis. Overall, this study provides a molecular groundwork for the aggressive behavior of IDC-P and could help identify potential strategies to improve treatment of IDC-P. SIGNIFICANCE: The genomic, transcriptomic, and epigenomic characterization of concurrent intraductal carcinoma and adenocarcinoma of the prostate deepens the biological understanding of this lethal disease and provides a genetic basis for developing targeted therapies.


Asunto(s)
Adenocarcinoma , Carcinoma Intraductal no Infiltrante , Neoplasias de la Próstata , Masculino , Humanos , Carcinoma Intraductal no Infiltrante/genética , Carcinoma Intraductal no Infiltrante/patología , Próstata/patología , Adenocarcinoma/genética , Adenocarcinoma/patología , Neoplasias de la Próstata/patología , Genómica , Clasificación del Tumor
8.
Cancers (Basel) ; 15(21)2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37958444

RESUMEN

Current common treatments for castration-resistant prostate cancer (CRPC) typically belong to one of three major categories: next-generation anti-androgen therapies (NGAT) including enzalutamide, abiraterone acetate, apalutamide, and darolutamide; taxane therapy represented by docetaxel; and PARP inhibitors (PARPi) like olaparib. Although these treatments have shown efficacy and have improved outcomes for many patients, some do not survive due to the emergence of therapeutic resistance. The clinical landscape is further complicated by limited knowledge about how the sequence of treatments impacts the development of therapeutic cross-resistance in CRPC. We have developed multiple CRPC models of acquired therapeutic resistance cell sublines from C4-2B cells. These include C4-2B MDVR, C4-2B AbiR, C4-2B ApaR, C4-2B DaroR, TaxR, and 2B-olapR, which are resistant to enzalutamide, abiraterone, apalutamide, darolutamide, docetaxel, and olaparib, respectively. These models are instrumental for analyzing gene expression and assessing responses to various treatments. Our findings reveal distinct cross-resistance characteristics among NGAT-resistant cell sublines. Specifically, resistance to enzalutamide induces resistance to abiraterone and vice versa, while maintaining sensitivity to taxanes and olaparib. Conversely, cells with acquired resistance to docetaxel exhibit cross-resistance to both cabazitaxel and olaparib but retain sensitivity to NGATs like enzalutamide and abiraterone. OlapR cells, significantly resistant to olaparib compared to parental cells, are still responsive to NGATs and docetaxel. Moreover, OlapR models display cross-resistance to other clinically relevant PARP inhibitors, including rucaparib, niraparib, and talazoparib. RNA-sequencing analyses have revealed a complex network of altered gene expressions that influence signaling pathways, energy metabolism, and apoptotic signaling, pivotal to cancer's evolution and progression. The data indicate that resistance mechanisms are distinct among different drug classes. Notably, NGAT-resistant sublines exhibited a significant downregulation of androgen-regulated genes, contrasting to the stable expression noted in olaparib and docetaxel-resistant sublines. These results may have clinical implications by showing that treatments of one class can be sequenced with those from another class, but caution should be taken when sequencing drugs of the same class.

9.
Pharmacol Res ; 189: 106692, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36773708

RESUMEN

Ubiquitin proteasome activity is suppressed in enzalutamide resistant prostate cancer cells, and the heat shock protein 70/STIP1 homology and U-box-containing protein 1 (HSP70/STUB1) machinery are involved in androgen receptor (AR) and AR variant protein stabilization. Targeting HSP70 could be a viable strategy to overcome resistance to androgen receptor signaling inhibitor (ARSI) in advanced prostate cancer. Here, we showed that a novel HSP70 allosteric inhibitor, JG98, significantly suppressed drug-resistant C4-2B MDVR and CWR22Rv1 cell growth, and enhanced enzalutamide treatment. JG98 also suppressed cell growth in conditional reprogramed cell cultures (CRCs) and organoids derived from advanced prostate cancer patient samples. Mechanistically, JG98 degraded AR/AR-V7 expression in resistant cells and promoted STUB1 nuclear translocation to bind AR-V7. Knockdown of the E3 ligase STUB1 significantly diminished the anticancer effects and partially restored AR-V7 inhibitory effects of JG98. JG231, a more potent analog developed from JG98, effectively suppressed the growth of the drug-resistant prostate cancer cells, CRCs, and organoids. Notably, the combination of JG231 and enzalutamide synergistically inhibited AR/AR-V7 expression and suppressed CWR22Rv1 xenograft tumor growth. Inhibition of HSP70 using novel small-molecule inhibitors coordinates with STUB1 to regulate AR/AR-V7 protein stabilization and ARSI resistance.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Receptores Androgénicos , Masculino , Humanos , Receptores Androgénicos/metabolismo , Antagonistas de Andrógenos , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Línea Celular Tumoral , Nitrilos/farmacología , Antagonistas de Receptores Androgénicos , Andrógenos/farmacología , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP70 de Choque Térmico/farmacología , Resistencia a Antineoplásicos , Ubiquitina-Proteína Ligasas
10.
Oncogene ; 42(9): 693-707, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36596844

RESUMEN

Castration-resistant prostate cancer (CRPC) is the main driving force of mortality in prostate cancer patients. Among the parameters contributing to the progression of CRPC and treatment failure, elevation of the steroidogenic enzyme AKR1C3 and androgen receptor variant 7 (AR-V7) are frequently reported. The AKR1C3/AR-V7 complex has been recognized as a major driver for drug resistance in advanced prostate cancer. Herein we report that the level of AKR1C3 is reciprocally regulated by the full-length androgen receptor (AR-FL) through binding to the distal enhancer region of the AKR1C3 gene. A novel function of PTUPB in AKR1C3 inhibition was discovered and PTUPB showed more effectiveness than indomethacin and celecoxib in suppressing AKR1C3 activity and CRPC cell growth. PTUPB synergizes with enzalutamide treatment in tumor suppression and gene signature regulation. Combination treatments with PTUPB and enzalutamide provide benefits by blocking AR/AR-V7 signaling, which inhibits the growth of castration relapsed VCaP xenograft tumors and patient-derived xenograft organoids. Targeting of the ARK1C3/AR/AR-V7 axis with PTUPB and enzalutamide may overcome drug resistance to AR signaling inhibitors in advanced prostate cancer.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Receptores Androgénicos , Masculino , Humanos , Receptores Androgénicos/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Nitrilos/uso terapéutico , Antagonistas de Receptores Androgénicos , Miembro C3 de la Familia 1 de las Aldo-Ceto Reductasas
11.
Am J Clin Exp Urol ; 10(5): 299-310, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36313205

RESUMEN

Resistance to androgen receptor (AR) targeted therapies remains as the main reason for most prostate cancer related deaths. Lineage plasticity resulting in altered, treatment insensitive prostate tumor cell phenotypes such neuroendocrine differentiated prostate cancer is a common manifestation within resistant tumors upon AR-targeted therapies. The mechanisms responsible for lineage plasticity in prostate cancer remain incompletely understood. Here we demonstrate that the enzalutamide resistant MDVR cell line possesses lineage plastic characteristics associated with overexpression of the Wnt transporter Wntless (WLS). Furthermore, we present evidence that overexpression of WLS is common in varying cell line models of lineage plastic prostate cancer, is higher in neuroendocrine patient samples, and positively correlates with the neuroendocrine marker SYP in clinical data. Targeting WLS in lineage plastic cellular models reduces viability and represses lineage plasticity associated gene expression. Our study provides insight into the importance of WLS to the development of lethal resistant prostate cancer and provides a potential target for the treatment of advanced disease.

12.
Commun Med (Lond) ; 2: 118, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36159187

RESUMEN

Background: Treatment-emergent neuroendocrine prostate cancer (NEPC) after androgen receptor (AR) targeted therapies is an aggressive variant of prostate cancer with an unfavorable prognosis. The underlying mechanisms for early neuroendocrine differentiation are poorly defined and diagnostic and prognostic biomarkers are needed. Methods: We performed transcriptomic analysis on the enzalutamide-resistant prostate cancer cell line C4-2B MDVR and NEPC patient databases to identify neural lineage signature (NLS) genes. Correlation of NLS genes with clinicopathologic features was determined. Cell viability was determined in C4-2B MDVR and H660 cells after knocking down ARHGEF2 using siRNA. Organoid viability of patient-derived xenografts was measured after knocking down ARHGEF2. Results: We identify a 95-gene NLS representing the molecular landscape of neural precursor cell proliferation, embryonic stem cell pluripotency, and neural stem cell differentiation, which may indicate an early or intermediate stage of neuroendocrine differentiation. These NLS genes positively correlate with conventional neuroendocrine markers such as chromogranin and synaptophysin, and negatively correlate with AR and AR target genes in advanced prostate cancer. Differentially expressed NLS genes stratify small-cell NEPC from prostate adenocarcinoma, which are closely associated with clinicopathologic features such as Gleason Score and metastasis status. Higher ARGHEF2, LHX2, and EPHB2 levels among the 95 NLS genes correlate with a shortened survival time in NEPC patients. Furthermore, downregulation of ARHGEF2 gene expression suppresses cell viability and markers of neuroendocrine differentiation in enzalutamide-resistant and neuroendocrine cells. Conclusions: The 95 neural lineage gene signatures capture an early molecular shift toward neuroendocrine differentiation, which could stratify advanced prostate cancer patients to optimize clinical treatment and serve as a source of potential therapeutic targets in advanced prostate cancer.

13.
Oncogene ; 41(37): 4307-4317, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35986103

RESUMEN

Neuroendocrine prostate cancer (NEPC), a lethal subset of prostate cancer, is characterized by loss of AR signaling and resulting resistance to AR-targeted therapy during neuroendocrine transdifferentiation, for which the molecular mechanisms remain unclear. Here, we report that neuropilin 2 (NRP2) is upregulated in both de novo and therapy-induced NEPC, which induces neuroendocrine markers, neuroendocrine cell morphology, and NEPC cell aggressive behavior. NRP2 silencing restricted NEPC tumor xenograft growth. Mechanistically, NRP2 engages in reciprocal crosstalk with AR, where NRP2 is transcriptionally inhibited by AR, and in turn suppresses AR signaling by downregulating the AR transcriptional program and confers resistance to enzalutamide. Moreover, NRP2 physically interacts with VEGFR2 through the intracellular SEA domain to activate STAT3 phosphorylation and subsequently SOX2, thus driving NEPC differentiation and growth. Collectively, these results characterize NRP2 as a driver of NEPC and suggest NRP2 as a potential therapeutic target in NEPC.


Asunto(s)
Carcinoma Neuroendocrino , Neoplasias de la Próstata , Carcinoma Neuroendocrino/genética , Línea Celular Tumoral , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Neuropilina-2/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología
14.
Mol Cancer Ther ; 21(10): 1594-1607, 2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-35930737

RESUMEN

The next-generation antiandrogen drugs such as enzalutamide and abiraterone extend survival times and improve quality of life in patients with advanced prostate cancer. However, resistance to both drugs occurs frequently through mechanisms that are incompletely understood. Wnt signaling, particularly through Wnt5a, plays vital roles in promoting prostate cancer progression and induction of resistance to enzalutamide and abiraterone. Development of novel strategies targeting Wnt5a to overcome resistance is an urgent need. In this study, we demonstrated that Wnt5a/FZD2-mediated noncanonical Wnt pathway is overexpressed in enzalutamide-resistant prostate cancer. In patient databases, both the levels of Wnt5a and FZD2 expression are upregulated upon the development of enzalutamide resistance and correlate with higher Gleason score, biochemical recurrence, and metastatic status, and with shortened disease-free survival duration. Blocking Wnt5a/FZD2 signal transduction not only diminished the activation of noncanonical Wnt signaling pathway, but also suppressed the constitutively activated androgen receptor (AR) and AR variants. Furthermore, we developed a novel bioengineered BERA-Wnt5a siRNA construct and demonstrated that inhibition of Wnt5a expression by the BERA-Wnt5a siRNA significantly suppressed tumor growth and enhanced enzalutamide treatment in vivo. These results indicate that Wnt5a/FZD2 signal pathway plays a critical role in promoting enzalutamide resistance, and targeting this pathway by BERA-Wnt5a siRNA can be developed as a potential therapy to treat advanced prostate cancer.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Neoplasias de la Próstata , Antagonistas de Andrógenos/farmacología , Benzamidas , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Receptores Frizzled/uso terapéutico , Humanos , Masculino , Nitrilos/uso terapéutico , Feniltiohidantoína , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , ARN Interferente Pequeño/uso terapéutico , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Vía de Señalización Wnt , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo
15.
Mol Cancer Ther ; 21(4): 677-685, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35086956

RESUMEN

PARP inhibition represents the dawn of precision medicine for treating prostate cancer. Despite this advance, questions remain regarding the use of PARP inhibitors (PARPi) for the treatment of this disease, including (i) how specifically do PARPi-sensitive tumor cells respond to treatment, and (ii) how does PARPi resistance develop? To address these questions, we characterized response to olaparib in sensitive LNCaP and C4-2B cells and developed two olaparib-resistant derivative cell line models from each, termed LN-OlapR and 2B-OlapR, respectively. OlapR cells possess distinct morphology from parental cells and display robust resistance to olaparib and other clinically relevant PARPis, including rucaparib, niraparib, and talazoparib. In LNCaP and C4-2B cells, we found that olaparib induces massive DNA damage, leading to activation of the G2-M checkpoint, activation of p53, and cell-cycle arrest. Furthermore, our data suggest that G2-M checkpoint activation leads to both cell death and senescence associated with p21 activity. In contrast, both LN-OlapR and 2B-OlapR cells do not arrest at G2-M and display a markedly blunted response to olaparib treatment. Interestingly, both OlapR cell lines harbor increased DNA damage relative to parental cells, suggesting that OlapR cells accumulate and manage persistent DNA damage during acquisition of resistance, likely through augmenting DNA repair capacity. Further impairing DNA repair through CDK1 inhibition enhances DNA damage, induces cell death, and sensitizes OlapR cells to olaparib treatment. Our data together further our understanding of PARPi treatment and provide a cellular platform system for the study of response and resistance to PARP inhibition.


Asunto(s)
Ftalazinas , Neoplasias de la Próstata , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , Humanos , Masculino , Ftalazinas/farmacología , Piperazinas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética
16.
BJU Int ; 129(3): 345-355, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34185954

RESUMEN

OBJECTIVES: To investigate the genetic alterations of patients with prostate cancer (PCa) with and without intraductal carcinoma of the prostate (IDC-P). PATIENTS AND METHODS: We performed targeted sequencing of plasma cell-free DNA on 161 patients with prostate adenocarcinoma (PAC) with IDC-P and 84 without IDC-P. Genomic alterations were compared between these two groups. The association between genetic alterations and patients' survival outcomes was also explored. RESULTS: We identified that 29.8% (48/161) and 21.4% (18/84) of patients with and without IDC-P harboured genomic alterations in DNA repair pathways, respectively (P = 0.210). Pathogenic germline DNA repair alterations were frequently detected in IDC-P carriers compared to IDC-P non-carriers (11.8% [19/161] vs 2.4% [two of 84], P = 0.024). Germline BReast CAncer type 2 susceptibility protein (BRCA2) and somatic cyclin-dependent kinase 12 (CDK12) defects were specifically identified in IDC-P carriers relative to PAC (BRCA2: 8.7% [14/161] vs 0% and CDK12: 6.8% [11/161] vs 1.2% [one of 84]). Patients with IDC-P had a distinct androgen receptor (AR) pathway alteration, characterised by an enrichment of nuclear receptor corepressor 2 (NCOR2) mutations compared with patients with pure PAC (21.1% [34/161] vs 6.0% [five of 84], P = 0.004). Increased AR alterations were detected in patients harbouring tumours with an IDC-P proportion of ≥10% vs those with an IDC-P proportion of <10% (6.4% [five of 78] vs 18.1% [15/83], P = 0.045). For IDC-P carriers, tumour protein p53 (TP53) mutation was associated with shorter castration-resistant-free survival (median 10.9 vs 28.9 months, P = 0.026), and BRCA2 alteration was related to rapid prostate-specific antigen progression for those receiving abiraterone treatment (median 9.1 vs 11.9 months, P = 0.036). CONCLUSION: Our findings provide genomic evidence explaining the aggressive phenotype of tumours with IDC-P, highlighting the potential therapeutic strategies for this patient population.


Asunto(s)
Carcinoma Intraductal no Infiltrante , ADN Tumoral Circulante , Neoplasias de la Próstata , Carcinoma Intraductal no Infiltrante/genética , Carcinoma Intraductal no Infiltrante/patología , ADN Tumoral Circulante/genética , Humanos , Masculino , Fenotipo , Próstata/patología , Neoplasias de la Próstata/patología
18.
Am J Clin Exp Urol ; 9(4): 292-300, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34541028

RESUMEN

Current therapies for treating castration resistant prostate cancer (CRPC) include abiraterone and enzalutamide which function by inhibiting androgen signaling by targeting androgen synthesis and antagonizing the androgen receptor (AR) respectively. While these therapies are initially beneficial, resistance inevitably develops. A number of pathways have been identified to contribute to CRPC progression and drug resistance. Among these is aberrant androgen signaling perpetuated by increased expression and activity of androgenic enzymes. While abiraterone inhibits the androgenic enzyme, CYP17A1, androgen synthesis inhibition by abiraterone is incomplete and sustained androgenesis persists, in part due to increased levels of AKR1C3 and steroid sulfatase (STS). Expression of both of these enzymes is increased in CRPC and is associated with resistance to anti-androgens. A number of studies have identified methods for targeting these enzymes. Indomethacin, a non-steroidal anti-inflammatory drug commonly used to treat inflammatory arthritis has been well established as an inhibitor of AKR1C3. Treatment of CRPC cells with indomethacin reduces cell growth and improves the response to enzalutamide and abiraterone. Similarly, STS inhibitors have been shown to reduce intracrine androgens and also reduce CRPC growth and enhance anti-androgen treatment. In this review, we provide an overview of androgen synthesis in CRPC and strategies aimed at inhibiting intracrine androgens.

19.
Mol Cancer Ther ; 20(10): 2061-2070, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34326198

RESUMEN

Docetaxel and cabazitaxel-based taxane chemotherapy are critical components in the management of advanced prostate cancer. However, their efficacy is hindered due to de novo presentation with or the development of resistance. Characterizing models of taxane-resistant prostate cancer will lead to creation of strategies to overcome insensitivity. We have previously characterized docetaxel-resistant C4-2B and DU145 cell line derivatives, TaxR and DU145-DTXR, respectively. In the present study, we characterize cabazitaxel-resistant derivative cell lines created from chronic cabazitaxel exposure of TaxR and DU145-DTXR cells, CabR and CTXR, respectively. We show that CabR and CTXR cells are robustly resistant to both taxanes but retain sensitivity to antiandrogens. Both CabR and CTXR cells possess increased expression of ABCB1, which is shown to mediate resistance to treatment. Interestingly, we also present evidence for coordinated overexpression of additional genes present within the 7q21.12 gene locus where ABCB1 resides. This locus, known as the ABCB1 amplicon, has been demonstrated to be amplified in multidrug-resistant tumor cells, but little is known regarding its role in prostate cancer. We show that two ABCB1-amplicon genes other than ABCB1, RUNDC3B and DBF4, promote cellular viability and treatment resistance in taxane-resistant prostate cancer models. We present evidence that coordinated amplification of ABCB1-amplicon genes is common in a subset of prostate cancer patients. These data together suggest that ABCB1-amplicon activation plays a critical role in taxane resistance.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Biomarcadores de Tumor/metabolismo , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Apoptosis , Biomarcadores de Tumor/genética , Proliferación Celular , Docetaxel/administración & dosificación , Humanos , Masculino , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Taxoides/administración & dosificación , Células Tumorales Cultivadas
20.
Oncogene ; 40(35): 5379-5392, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34272475

RESUMEN

Targeting androgen signaling with the second-generation anti-androgen drugs, such as enzalutamide (Enza), abiraterone (Abi), apalutamide (Apal), and darolutamide (Daro), is the mainstay for the treatment of castration-resistant prostate cancer (CRPC). While these treatments are effective initially, resistance occurs frequently. Continued expression of androgen receptor (AR) and its variants such as AR-V7 despite AR-targeted therapy contributes to treatment resistance and cancer progression in advanced CRPC patients. This highlights the need for new strategies blocking continued AR signaling. Here, we identify a novel AR/AR-V7 degrader (ARVib) and found that ARVib effectively degrades AR/AR-V7 protein and attenuates AR/AR-V7 downstream target gene expression in prostate cancer cells. Mechanistically, ARVib degrades AR/AR-V7 protein through the ubiquitin-proteasome pathway mediated by HSP70/STUB1 machinery modulation. ARVib suppresses HSP70 expression and promotes STUB1 nuclear translocation, where STUB1 binds to AR/AR-V7 and promotes its ubiquitination and degradation. ARVib significantly inhibits resistant prostate tumor growth and improves enzalutamide treatment in vitro and in vivo. These data suggest that ARVib has potential for development as an AR/AR-V7 degrader to treat resistant CRPC.


Asunto(s)
Neoplasias de la Próstata , Receptores Androgénicos , Humanos , Masculino , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA