Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Appl Opt ; 62(29): 7713-7720, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37855479

RESUMEN

The fusion of two large-exposure-ratio images, especially in the rocket launch field, is a challenging task because of fast-moving objects and differential features from daily scenes. Based on the large-exposure-ratio images, we propose a principle of halo formation at the boundaries of over-exposed areas. To avoid the halos in the fusion images, an improved morphological segmentation (IMS) method is developed to segment the over-exposed regions and boundaries. The IMS method is inspired by the mountain topography and builds a bridge between the 3D patches and quadratic polynomial coefficients. An improved multiscale method with segmentation in high-exposed images is proposed. In the rocket launch observation experiment, we constructed a two-camera simultaneous imaging system to avoid the dynamic scenes. The result of our proposed fusion method could best preserve the details and colors of the flames in low-exposed images and has the best subjective observation. The objective matrices also demonstrate superior edge and contrast performances over mainstream methods.

2.
Appl Opt ; 52(31): 7524-9, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24216654

RESUMEN

A femtosecond laser provides an ideal source to investigate the laser-induced damage of a charge-coupled device (CCD) owing to its thermal-free and localized damage properties. For conventional damage mechanisms in the nanosecond laser regime, a leakage current and degradation of a point spread function or modulation transfer function of the CCD are caused by the thermal damages to the oxide and adjacent electrodes. However, the damage mechanisms are quite different for a femtosecond laser. In this paper, an area CCD was subjected to Ti: sapphire laser irradiation at 800 nm by 100 fs single pulses. Electric-induced oxide breakdown is considered to be the primary mechanism to cause a leakage current, and the injured oxide is between the gate and source in the metal-oxide semiconductor field-effect transistor (MOSFET) structure for one CCD pixel. Optical microscopy and scanning electron microscopy are used to investigate the damaged areas and the results show that the electrodes and the oxide underneath are not directly affected by the femtosecond laser, which helps to get rid of the conventional damage mechanisms. For the primary damage mechanism, direct damage by hot carriers, anode hole injection, and an enlarged electric field in the insulating layer are three possible ways to cause oxide breakdown. The leakage current is proved by the decrease of the resistance of electrodes to the substrate. The output saturated images and the dynamics of an area CCD indicate that the leakage current is from an electrode to a light sensing area (or gate to source for a MOSFET), which proves the oxide breakdown mechanism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA