Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 410
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Org Biomol Chem ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225050

RESUMEN

A novel, easily synthesizable, shelf-stable electrophilic trifluoromethylselenolating reagent, N-trifluoromethylselenosaccharin, has been developed. This reagent can be synthesized in good yield by a two-step one-pot reaction from BnSeCF3, SO2Cl2, and silver saccharin. N-Trifluoromethylselenosaccharin proves to be an efficient trifluoromethylselenolating reagent, enabling the direct trifluoromethylselenolation of various electron-rich aromatic and heteroaromatic rings under mild reaction conditions. It exhibits excellent chemoselectivity and excellent compatibility with various functional groups, making it suitable for late-stage trifluoromethylselenolation applications in complex natural product and drug synthesis.

2.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(8): 841-847, 2024 Aug.
Artículo en Chino | MEDLINE | ID: mdl-39238408

RESUMEN

OBJECTIVE: To investigate the protective effects and mechanisms of targeted inhibition of type 3 deiodinase (Dio3) on skeletal muscle mitochondria in sepsis. METHODS: (1) In vivo experiments: adeno-associated virus (AAV) was employed to specifically target Dio3 expression in the anterior tibial muscle of rats, and a septic rat model was generated using cecal ligation and puncture (CLP). The male Sprague-Dawley (SD) rats were divided into shNC+Sham group, shD3+Sham group, shNC+CLP group, and shD3+CLP group by random number table method, with 8 rats in each group. After CLP modeling, tibial samples were collected and Western blotting analysis was conducted to assess the protein levels of Dio3, peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α), and silence-regulatory protein 1 (SIRT1). Real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) was utilized to examine mRNA expression of genes including thyroid hormone receptors (THRα, THRß), monocarboxylate transporter 10 (MCT10), mitochondrial DNA (mtDNA), and PGC1α. Transmission electron microscopy was employed to investigate mitochondrial morphology. (2) In vitro experiments: involved culturing C2C12 myoblasts, interfering with Dio3 expression using lentivirus, and constructing an endotoxin cell model by treating cells with lipopolysaccharide (LPS). C2C12 cells were divided into shNC group, shD3 group, shNC+LPS group, and shD3+LPS group. Immunofluorescence colocalization analysis was performed to determine the intracellular distribution of PGC1α. Co-immunoprecipitation assay coupled with Western blotting was carried out to evaluate the acetylation level of PGC1α. RESULTS: (1) In vivo experiments: compared with the shNC+Sham group, the expression of Dio3 protein in skeletal muscle of the shNC+CLP group was significantly increased (Dio3/ß-Tubulin: 3.32±0.70 vs. 1.00±0.49, P < 0.05), however, there was no significant difference in the shD3+Sham group. Dio3 expression in the shD3+CLP group was markedly reduced relative to the shNC+CLP group (Dio3/ß-Tubulin: 1.42±0.54 vs. 3.32±0.70, P < 0.05). Compared with the shNC+CLP group, the expression of T3-regulated genes in the shD3+CLP group were restored [THRα mRNA (2-ΔΔCt): 0.67±0.05 vs. 0.33±0.01, THRß mRNA (2-ΔΔCt): 0.94±0.05 vs. 0.67±0.02, MCT10 mRNA (2-ΔΔCt): 0.65±0.03 vs. 0.57±0.02, all P < 0.05]. Morphology analysis by electron microscopy suggested prominent mitochondrial damage in the skeletal muscle of the shNC+CLP group, while the shD3+CLP group exhibited a marked improvement. Compared with the shNC+Sham group, the shNC+CLP group significantly reduced the number of mitochondria (cells/HP: 10.375±1.375 vs. 13.750±2.063, P < 0.05), while the shD3+CLP group significantly increased the number of mitochondria compared to the shNC+CLP group (cells/HP: 11.250±2.063 vs. 10.375±1.375, P < 0.05). The expression of mtDNA in shNC+CLP group was markedly reduced compared with shNC+Sham group (copies: 0.842±0.035 vs. 1.002±0.064, P < 0.05). Although no difference was detected in the mtDNA expression between shD3+CLP group and shNC+CLP group, but significant increase was found when compared with the shD3+Sham group (copies: 0.758±0.035 vs. 0.474±0.050, P < 0.05). In the shD3+CLP group, PGC1α expression was significantly improved at both transcriptional and protein levels relative to the shNC+CLP group [PGC1α mRNA (2-ΔΔCt): 1.49±0.13 vs. 0.68±0.06, PGC1α/ß-Tubulin: 0.76±0.02 vs. 0.62±0.04, both P < 0.05]. (2) In vitro experiments: post-24-hour LPS treatment of C2C12 cells, the cellular localization of PGC1α became diffuse; interference with Dio3 expression promoted PGC1α translocation to the perinuclear region and nucleus. Moreover, the acetylated PGC1α level in the shD3+LPS group was significantly lower than that in the shNC+LPS group (acetylated PGC1α/ß-Tubulin: 0.59±0.01 vs. 1.24±0.01, P < 0.05), while the expression of the deacetylating agent SIRT1 was substantially elevated following Dio3 inhibition (SIRT1/ß-Tubulin: 1.04±0.04 vs. 0.58±0.03, P < 0.05). When SIRT1 activity was inhibited by using EX527, PGC1α protein expression was notably decreased compared to the shD3+LPS group (PGC1α/ß-Tubulin: 0.92±0.03 vs. 1.58±0.03, P < 0.05). CONCLUSIONS: Inhibition of Dio3 in skeletal muscle reduced the acetylation of PGC1α through activating SIRT1, facilitating nuclear translocation of PGC1α, thereby offering protection against sepsis-induced skeletal muscle mitochondrial damage.


Asunto(s)
Yoduro Peroxidasa , Músculo Esquelético , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Ratas Sprague-Dawley , Sepsis , Animales , Masculino , Ratas , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Sepsis/metabolismo , Yoduro Peroxidasa/metabolismo , Yoduro Peroxidasa/genética , Músculo Esquelético/metabolismo , Sirtuina 1/metabolismo , Mitocondrias Musculares/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
3.
BMC Musculoskelet Disord ; 25(1): 656, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39169286

RESUMEN

OBJECTIVE: To investigate the clinical significance of using 3D printing guides in modified unilateral puncture percutaneous vertebroplasty (PVP) for the treatment of osteoporotic vertebral compression fractures (OVCF), and to explore a new method for preventing paravertebral vein leakage during PVP in conjunction with a previous study of the optimal puncture-side bone cement/vertebral volume ratio(PSBCV/VV%). METHODS: This retrospective study analyzed 99 patients who underwent unilateral puncture PVP between January 2023 and December 2023. Patients were divided into a guide plate group (46 patients) and a conventional group (53 patients). The guide plate group underwent modified unilateral puncture PVP with the guidance of 3D printing guides, while the conventional group underwent unilateral puncture PVP using the conventional pedicle approach. The distribution of bone cement, surgical outcomes, and the occurrence of cement leakage into paravertebral veins were observed in both groups. RESULTS: The guide plate group had significantly shorter operating time and required fewer fluoroscopies compared to the conventional group. The amount of bone cement volume (BCV) used in the guide plate group was higher, but the amount of bone cement volume on the puncture side(PSBCV), the PSBCV/VV%, and the rate of paravertebral vein leakage were lower in the guide plate group compared to the conventional group (P < 0.05). Within each group, significant improvements in anterior vertebral margin height, Cobb angle, visual analog scale (VAS) score, and Oswestry Disability Index (ODI) were observed at 1 day and 1 month postoperatively compared to preoperative values (P < 0.05). CONCLUSION: Using 3D printing guides in modified unilateral puncture PVP is a safe and effective method for treating OVCF. And it has the advantages of short operation time, less fluoroscopy, even distribution of bone cement, and a low rate of paravertebral vein leakage.


Asunto(s)
Cementos para Huesos , Fracturas por Compresión , Fracturas Osteoporóticas , Impresión Tridimensional , Fracturas de la Columna Vertebral , Vertebroplastia , Humanos , Estudios Retrospectivos , Fracturas por Compresión/cirugía , Fracturas por Compresión/diagnóstico por imagen , Femenino , Vertebroplastia/métodos , Masculino , Anciano , Fracturas Osteoporóticas/cirugía , Fracturas de la Columna Vertebral/cirugía , Fracturas de la Columna Vertebral/diagnóstico por imagen , Persona de Mediana Edad , Anciano de 80 o más Años , Cementos para Huesos/uso terapéutico , Resultado del Tratamiento , Punciones/métodos , Relevancia Clínica
4.
Nano Lett ; 24(34): 10605-10613, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39145462

RESUMEN

A metal-organic frameworks (MOFs)-in-MOF nanovehicle (160 nm), which was constructed with newly prepared ultrasmall Cu(I)Cu(II)-BTC MOFs (UCMs, 2.95 nm) loaded with doxorubicin (DOX) and a nuclear localization signal (NLS) peptide as multicores (UCMDNs) and ZIF-8 as the shell MOF, was proposed to cross layers of biological barriers with adaptive size evolution capacity for achieving efficient nucleus-targeted drug delivery. It first enhanced tumor tissue penetration through its larger nanosize effect. Then the acidic tumor environment made the ZIF-8 shell degrade, releasing small-sized UCMDNs to enter into the cell and into the nucleus under the guidance of NLS. Furthermore, due to the distinct surface structural characteristics of UCMs, UCMDNs remained stable in the cytoplasm and collapsed in the nucleus due to the DOX-DNA interaction to deliver DOX precisely. It showed superior performance in the nucleus-directed delivery of DOX (delivery efficiency up to 56.7%) and a high tumor growth inhibition rate (96.4%), offering promising prospects in tumor chemotherapy.


Asunto(s)
Núcleo Celular , Doxorrubicina , Estructuras Metalorgánicas , Doxorrubicina/química , Doxorrubicina/farmacología , Doxorrubicina/administración & dosificación , Estructuras Metalorgánicas/química , Humanos , Núcleo Celular/metabolismo , Núcleo Celular/efectos de los fármacos , Animales , Ratones , Portadores de Fármacos/química , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Señales de Localización Nuclear/química , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/administración & dosificación , Tamaño de la Partícula , Nanopartículas/química , Cobre/química
5.
Biosens Bioelectron ; 265: 116648, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39178718

RESUMEN

Subcellularly amperometric analysis in situ is crucial for understanding intracellular redox biochemistry and subcellular heterogeneity. Unfortunately, the ultra-small size and complex microenvironment inside the cell pose a great challenge to achieve this goal. To address the challenge, a minimized living microbial sensor has been fabricated in this work for amperometric analysis. Here, by fabricating the dimidiate microelectrode as the working electrode, while fitting a living electroactive bacterium (EAB) as the transducer, outward extracellular electron transfer (EET) of the sensory EAB is correlated with the concentration of lactic acid, which is electrochemically recorded and thus displays an electrical signal output for detection. In specific, the S. oneidensis modified dimidiate microelectrode (S.O.@GNE-NPE) acts as an integrated electroanalytical device to generate the electrical signal in situ. The established microcircuit provides unprecedented precision and sensitivity, contributing to subcellular amperometric measurement. The microbial sensor shows a linear response in the concentration range of 0-60 mM, with a limit of detection (LOD) at 0.3 mM. The microsensor also demonstrates good selectivity against interferences. Additionally, intracellular analysis of lactic acid provides direct evidence of enhanced lactic metabolism in cancer cells as a result of "Warburg Effect". This work shows an example of nano-, bio- and electric technologies that have been integrated on the EAB-modified dimidiate microelectrode, and achieves intracellular biosensing application through such integration. It may give a new strategy on the combination of micro/nanotechnologies with sensory EAB for the necessary development of bioelectronic devices.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Ácido Láctico , Microelectrodos , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Humanos , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Ácido Láctico/análisis , Ácido Láctico/metabolismo , Diseño de Equipo , Límite de Detección , Shewanella
6.
Int J Biol Macromol ; : 134878, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39168221

RESUMEN

Alismatis Rhizoma (AR), a traditional Chinese medicine for treating obesity in traditional Chinese medicine clinic, is recognized as a promising source of lead compounds of lipase inhibitors. Ultrafiltration centrifugal combined with liquid chromatography-mass spectrometry (UF-LC-MS) was used for screening potential lipase inhibitors from AR, and the result indicated the binding capacity between compound 7 and lipase (92.3 ±â€¯1.28 %) was significantly higher than other triterpenoids, and was identified as alisol C 23-acetate. It exhibited a mixed-type inhibitory behavior with an IC50 value of 84.88 ±â€¯1.03 µM. Subsequently, the binding pockets of alisol C 23-acetate to lipase were predicted, and their binding mechanism was explored with molecular simulation. Pocket 1 (active center) and pocket 4 might be the orthosteric and allosteric binding sites of alisol C 23-acetate to lipase, respectively. The interaction between alisol C 23-acetate and lipase was identified to involve key amino acid residues such as GLY-77, PHE-78, TYR-115, LEU-154, PRO-181, PHE-216, LEU-264, ASP-278, GLN-306, ARG-313, and VAL-426. Meanwhile, alisol C 23-acetate remained stable during the intestinal digestive but degraded in the gastric digestion. Overall, alisol C 23-acetate is expected to be the lead compound of lipase inhibitors for treating obesity.

8.
Methods Mol Biol ; 2844: 247-260, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39068345

RESUMEN

By integrating electroactive genes into engineered sensing microorganisms, information about the object to be measured can be converted into the output of an electrical signal, omitting the process of converting the output of an electrical signal in conventional sensing strategies and simplifying the steps of biosensor development. By utilizing synthetic biology methods, we can not only create novel genetic circuits by using logic gate operations and integrating genes from other biological components, solving biosensing issues in living systems and enhancing sensor performance, but also convert various types of genetic circuits into electrical signals, broadening the application range of biosensors. Here, we describe an example of how to genetically engineer microorganisms with electroactive genes and the fabrication of an electrochemical microbial biosensor.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Ingeniería Genética , Técnicas Biosensibles/métodos , Ingeniería Genética/métodos , Técnicas Electroquímicas/métodos , Biología Sintética/métodos , Redes Reguladoras de Genes
9.
Front Neurol ; 15: 1398007, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38882694

RESUMEN

Background: In some MMD patients, the digital subtraction angiography (DSA) examination found, occlusion in the ipsilateral internal carotid artery or middle cerebral artery, accompanied by the formation of numerous moyamoya vessels. Conversely, the contralateral internal carotid artery or middle cerebral artery shows signs of stenosis without the presence of moyamoya vessels. Notably, cerebral perfusion studies reveal a similar or even more severe reduction in perfusion on the occluded side compared to the stenotic side. Importantly, clinical symptoms in these patients are typically attributed to ischemia caused by the stenotic side. This condition is referred to as unstable moyamoya disease (uMMD). Objective: This clinical research focuses on evaluating risk factors related to MMD and developing strategies to minimize postoperative complications. The study aims to analyze vascular characteristics and identify potential risk factors in patients with uMMD. Methods: The authors reviewed consecutive cases with complete clinical and radiological documentation of patients who underwent surgery between January 2018 and June 2023. Univariate analysis and multivariate logistic regression analysis were employed to understand the risk factors and prognosis of postoperative complications in uMMD. Results: Postoperative complications were retrospectively analyzed in 1481 patients (aged 14 to 65). Among them, 1,429 patients were assigned to the conventional treatment group, while 52 were in the unstable moyamoya disease group. The uMMD treatment group showed a significantly higher incidence of early postoperative complications such as RIND, cerebral infarction, and cerebral hemorrhage (p < 0.05). Univariate and multivariate logistic regression analyses were conducted on the postoperative complications of 52 uMMD patients. Initial symptoms of stenosis ≤50% (univariate: p = 0.008, multivariate: p = 0.015; OR [95% CI] =23.149 [1.853-289.217]) and choosing occluded side surgery (univariate: p = 0.043, multivariate: p = 0.018; OR [95% CI] =0.059 [0.006-0.617]) were identified as significant risk factors for postoperative neurological complications. Conclusion: Compared to the conventional treatment group, uMMD has higher complication rates, with vascular stenosis degree and surgical side selection identified as significant risk factors. A comprehensive understanding of preoperative clinical symptoms and vascular characteristics in moyamoya disease patients, coupled with the formulation of rational surgical plans, contributes positively to decreasing postoperative mortality and disability rates in uMMD.

10.
Chem Sci ; 15(24): 9224-9239, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38903238

RESUMEN

Sodium-ion batteries (SIBs) is a promising technology for next-generation energy storage. However, their performance is limited at low temperatures due to the inferior bulk and interfacial resistance of current electrolytes. Here we present a systematic study to evaluate carboxylate ester-based electrolytes for SIB applications, due to their favorable properties (i.e., low melting point, low viscosity and high dielectric constant). The effects of salt, concentration and solvent molecular structure were systematically examined and compared with those of carbonate-based electrolytes. By combining electrochemical tests with spectroscopic characterization, the performance of selective carboxylate ester-based electrolytes in hard carbon/Na and Na3V2(PO4)3/Na half-cells was evaluated. We found carboxylates enable high electrolyte conductivities, especially at low temperatures. However, carboxylates alone are inadequate to form a stable interphase due to their high reactivity, which can be addressed by choosing a suitable anion and facilitating anion-rich Na+ solvation by increasing salt concentration. Fundamental knowledge on the chemistry-property-performance correlation of this new family of electrolytes was obtained, and their benefits and pitfalls were thoroughly discussed. These discoveries and knowledge will shed light on the potential of carboxylate ester-based electrolytes and provide the foundation for further electrolyte engineering.

11.
J Am Chem Soc ; 146(23): 16194-16202, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38832699

RESUMEN

Although progress has been made in enantioselective hydroboration of di- and trisubstituted alkenes over the past decades, enantioselective hydroboration of tetrasubstituted alkenes with high diastereo- and enantioselectivities continues as an unmet challenge since the 1950s due to its extremely low reactivity and the difficulties to simultaneously control the regio- and stereoselectivity of a tetrasubstituted alkene. Here, we report highly regio-, diastereo-, and enantioselective catalytic hydroboration of diverse acyclic tetrasubstituted alkenes. The delicate interplay of an electron-rich rhodium complex and coordination-assistance forms a highly adaptive catalyst that effectively overcomes the low reactivity and controls the stereoselectivity. The generality of the catalyst system is exemplified by its efficacy across various tetrasubstituted alkenes with diverse steric and electronic properties.

12.
Thorac Cancer ; 15(19): 1490-1501, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38803052

RESUMEN

BACKGROUND: Non-small-cell lung cancer (NSCLC) is a common malignancy with high morbidity and mortality. Circular RNAs are widely involved in NSCLC progression. However, the mechanism of circSLC25A16 in NSCLC has not been reported. METHODS: The expressions of circSLC25A16, microRNA-335-5p (miR-335-5p), and CDGSH iron-sulfur domain-containing protein 2 (CISD2) were monitored by quantitative real-time fluorescence polymerase chain reaction. Western blot was also carried out to measure the protein levels of CISD2, hexokinase 2 (HK2), and lactate dehydrogenase A (LDHA). For functional analysis, cell counting kit-8 assay, 5-ethynyl-2'-deoxyuridine, flow cytometry, transwell, and wound healing assays were utilized to examine cell proliferation, apoptosis, and migration. Glucose uptake and lactate production were detected using commercial kits. The relationship between miR-335-5p and circSLC25A16 or CISD2 was verified by dual-luciferase reporter and RNA immunoprecipitation assays. Furthermore, tumor xenograft was established to explore the function of circSLC25A16 in vivo. RESULTS: CircSLC25A16 and CISD2 were overexpressed in NSCLC, but miR-335-5p was downregulated. CircSLC25A16 acted as a miR-335-5p sponge, and silencing of circSLC25A16 arrested cell proliferation, migration, and glycolysis, and promoted apoptosis, but these impacts were resumed by miR-335-5p inhibition. CISD2 was a miR-335-5p target, and overexpression of CISD2 abolished the suppressive function of miR-335-5p mimic on the malignant behavior of NSCLC cells. CircSLC25A16 could adsorb miR-335-5p to mediate CISD2 expression. Additionally, silencing circSLC25A16 restrained the growth of NSCLC tumor xenograft in vivo. CONCLUSION: CircSLC25A16 facilitated NSCLC progression via the miR-335-5p/CISD2 axis, implying that circSLC25A16 may serve as a novel biomarker for NSCLC treatment.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Proliferación Celular , Neoplasias Pulmonares , MicroARNs , ARN Circular , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Humanos , MicroARNs/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Ratones , Animales , ARN Circular/genética , Apoptosis , Movimiento Celular , Ratones Desnudos , Regulación Neoplásica de la Expresión Génica , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Heliyon ; 10(9): e29904, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38707440

RESUMEN

The role of human cell division cycle 73 (CDC73) in human cancers has sparked controversy; however, its significance in oesophageal cancer remains elusive. This study aimed to elucidate CDC73 expression and its biological implications in human oesophageal cancer. Our findings unveiled a notable upregulation of CDC73 in both oesophageal cancer cell lines and tissues. Importantly, elevated CDC73 levels in patients with oesophageal cancer correlated with an unfavourable prognosis. Functional investigations revealed that CDC73 knockdown effectively curtailed the proliferation and growth of oesophageal cancer cells both in vitro and in vivo. Mechanistically, RRP15 emerged as a potential downstream target of CDC73 through a screening process involving identification of the top co-expressed genes, subsequent knockdown experiments, and observation of significant inhibition of cell proliferation, with RRP15 showing the most pronounced effect. This finding was further supported by the positive correlation observed between CDC73 and RRP15 in ESCA samples analysed using the ENCORI Pan-Cancer Analysis Platform. Notably, depletion of RRP15 in CDC73-overexpressing cells led to a shift from augmented to diminished tumour growth. Collectively, our findings underscore the pivotal role of CDC73 in oesophageal cancer through the modulation of RRP15 expression, suggesting CDC73 as a potential therapeutic target for treating oesophageal cancer.

15.
Front Public Health ; 12: 1362268, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38818440

RESUMEN

Introduction: The study aims to examine the mediating role of anxiety in the relationship between social participation and Subjective Wellbeing among Chinese older adults. Additionally, it investigates the moderating ed of education in this relationship. Methods: The data came from the Chinese Longitudinal Healthy Longevity Survey (CLHLS) published by peking University, with a sample size of 10,626 individuals aged 60 years and above. SPSS 21.0 was used for the statistical analysis of the data, and Mplus 8.0 was used for the statistical processing of the mediating and moderating effects analysis. Results: (1) The social participation significantly and positively predicated Subjective Wellbeing; (2) Anxiety partially mediated the eect between social participation and Subjective Wellbeing. The mediating eect value was 0.103; (3) Education plays a moderating role in the impact of social participation on subjective Wellbeing. Discussion: In summary, social participation can reduce the anxiety and enhance their Subjective Wellbeing. Meanwhile, the eet of social participation on Subjective Wellbeing was the greatest for the older adult with high education. The findings suggest that community-led activities can be initiated to improve social participation in the older adult. Furthermore, educational courses could be to support the healthy aging of older adults in China.


Asunto(s)
Ansiedad , Participación Social , Humanos , Participación Social/psicología , Anciano , Masculino , Femenino , China , Ansiedad/psicología , Persona de Mediana Edad , Estudios Longitudinales , Anciano de 80 o más Años , Escolaridad , Encuestas y Cuestionarios
16.
Materials (Basel) ; 17(3)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38591375

RESUMEN

The hydrolysis mechanism of americium was calculated using density functional theory, and the detailed microscopic reaction mechanism was obtained. The results show that americium reacts with water along the octet state to produce oxides and H2, and that this reaction is exothermic. The interaction between Am and O atoms gradually changes from initially electrostatic interaction to covalent interaction, and continues to strengthen. During the reaction process, Am atoms always lose electrons, the 5f orbital is obviously involved, and there is df orbital hybridization. This study provides the necessary theoretical data support for the theoretical and experimental study of the actinide system.

17.
J Phys Chem A ; 128(16): 3186-3193, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38600649

RESUMEN

The high-resolution rovibronic line lists of the MgH+ molecular cation are presented in our work. The potential energy curves are calculated by the method of multireference configuration interaction and Davidson correction (MRCI+Q) with the spin-orbit coupling (SOC) effect. Spectroscopy constants are fitted and the results are in good agreement with experiments, ensuring the accuracy of the electronic structure. On account of potential energy curves and transition dipole moments, the Franck-Condon factors and Einstein coefficients of transition are obtained. These calculations are used to obtain an accurate partition functions and line lists for molecules. Using the partition functions and line lists, the absorption cross-sections under different temperatures and pressures were simulated. Our work could provide some theoretical insights into solar and cold planet spectrum.

18.
iScience ; 27(5): 109649, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38638567

RESUMEN

Excessive neuroinflammation after spinal cord injury (SCI) is a major hurdle during nerve repair. Although proinflammatory macrophage/microglia-mediated neuroinflammation plays important roles, the underlying mechanism that triggers neuroinflammation and aggravating factors remain unclear. The present study identified a proinflammatory role of semaphorin3C (SEMA3C) in immunoregulation after SCI. SEMA3C expression level peaked 7 days post-injury (dpi) and decreased by 14 dpi. In vivo and in vitro studies revealed that macrophages/microglia expressed SEMA3C in the local microenvironment, which induced neuroinflammation and conversion of proinflammatory macrophage/microglia. Mechanistic experiments revealed that RAGE/NF-κB was downstream target of SEMA3C. Inhibiting SEMA3C-mediated RAGE signaling considerably suppressed proinflammatory cytokine production, reversed polarization of macrophages/microglia shortly after SCI. In addition, inhibition of SEMA3C-mediated RAGE signaling suggested that the SEMA3C/RAGE axis is a feasible target to preserve axons from neuroinflammation. Taken together, our study provides the first experimental evidence of an immunoregulatory role for SEMA3C in SCI via an autocrine mechanism.

19.
Talanta ; 274: 126071, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38604045

RESUMEN

The construction of hybrid materials is significant for the exploration of functionalities in colorimetric biosensing due to its structural designability and synergy effects. In this work, a COF-on-MOF hybrid nanomaterial has been newly synthesized for colorimetric biosensing. Experimental results reveal that on-surface synthesis of COF on MOF brings nanoscale proximity between COF and MOF, which exhibits more than two folds of peroxidase-like activity as compared to single Fe-MOF. Therefore, by using the MCA@Fe-MOF nanomaterial with the assist of a specific acetyl-peptide, MCA@Fe-MOF can serve as an efficient signal reporter for colorimetric assay of histone deacetylase (HDAC), and the limit of detection (LOD) can be as low as 0.261 nM. Looking forward, the demand for diverse and promising COF-on-MOF nanomaterials with varied functionalities is anticipated, propelling further exploration of their role in colorimetric biosensing.


Asunto(s)
Técnicas Biosensibles , Estructuras Metalorgánicas/química , Técnicas Biosensibles/métodos , Colorimetría/instrumentación , Colorimetría/métodos , Catálisis , Histona Desacetilasas/metabolismo , Límite de Detección , Nanopartículas/química
20.
Int J Biol Macromol ; 264(Pt 2): 130720, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38460626

RESUMEN

Penthorum chinense Pursh is a traditional Miao medicine, mainly used in the treatment of liver diseases. In this study, an acidic heteropolysaccharide PCPP was isolated from P. chinense with an average molecular weight of 14.96 kDa. PCPP contained arabinogalactan and homogalacturonan segments, which is formed by 4-Galp-(1 â†’ 5)-Araf-1 and 3,6-Galp-(1 â†’ 6)-Galp-1,3 glycosidic linkage. A variety of side chains, including t-Glcp-(1 â†’ 4)-Glcp-(1 â†’ 4)-GlcpA-1, t-Xylp-(1→, and 2-Manp-(1 â†’ 4)-GalpA-1,3 linked to the O-3 and O-6 of 3,6-Galp. The antioxidant activity measurement in three models demonstrated that PCPP exhibited ROS scavenging capacity, antioxidant ability in the cellular model, enhancement of oxidative stress resistance, and healthspan-promoting effect in the worm model. These results provided the theoretical fundament of PCPP as a potential natural antioxidant.


Asunto(s)
Antioxidantes , Estrés Oxidativo , Antioxidantes/farmacología , Antioxidantes/química , Polisacáridos/farmacología , Polisacáridos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA