Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Blood Adv ; 8(4): 947-958, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38181781

RESUMEN

ABSTRACT: Acute graft-versus-host disease (GVHD) is a major complication of allogeneic hematopoietic cell transplantation (allo-HCT). Using preclinical mouse models of disease, previous work in our laboratory has linked microRNA-155 (miR-155) to the development of acute GVHD. Transplantation of donor T cells from miR-155 host gene (MIR155HG) knockout mice prevented acute GVHD in multiple murine models of disease while maintaining critical graft-versus-leukemia (GVL) response, necessary for relapse prevention. In this study, we used clustered, regularly interspaced, short palindromic repeats (CRISPR)/Cas9 genome editing to delete miR-155 in primary T cells (MIR155HGΔexon3) from human donors, resulting in stable and sustained reduction in expression of miR-155. Using the xenogeneic model of acute GVHD, we show that NOD/SCID/IL2rγnull (NSG) mice receiving MIR155HGΔexon3 human T cells provide protection from lethal acute GVHD compared with mice that received human T cells with intact miR-155. MIR155HGΔexon3 human T cells persist in the recipients displaying decreased proliferation potential, reduced pathogenic T helper-1 cell population, and infiltration into GVHD target organs, such as the liver and skin. Importantly, MIR155HGΔexon3 human T cells retain GVL response significantly improving survival in an in vivo model of xeno-GVL. Altogether, we show that CRISPR/Cas9-mediated deletion of MIR155HG in primary human donor T cells is an innovative approach to generate allogeneic donor T cells that provide protection from lethal GVHD while maintaining robust antileukemic response.


Asunto(s)
Enfermedad Injerto contra Huésped , MicroARNs , Humanos , Ratones , Animales , Incidencia , Sistemas CRISPR-Cas , Ratones Endogámicos NOD , Ratones SCID , Enfermedad Injerto contra Huésped/prevención & control , Ratones Noqueados , MicroARNs/genética
2.
Cell Biosci ; 11(1): 222, 2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-34963485

RESUMEN

BACKGROUND: Anoctamin 5 (ANO5) is a membrane protein belonging to the TMEM16/Anoctamin family and its deficiency leads to the development of limb girdle muscular dystrophy R12 (LGMDR12). However, little has been known about the interactome of ANO5 and its cellular functions. RESULTS: In this study, we exploited a proximal labeling approach to identify the interacting proteins of ANO5 in C2C12 myoblasts stably expressing ANO5 tagged with BioID2. Mass spectrometry identified 41 unique proteins including BVES and POPDC3 specifically from ANO5-BioID2 samples, but not from BioID2 fused with ANO6 or MG53. The interaction between ANO5 and BVES was further confirmed by co-immunoprecipitation (Co-IP), and the N-terminus of ANO5 mediated the interaction with the C-terminus of BVES. ANO5 and BVES were co-localized in muscle cells and enriched at the endoplasmic reticulum (ER) membrane. Genome editing-mediated ANO5 or BVES disruption significantly suppressed C2C12 myoblast differentiation with little impact on proliferation. CONCLUSIONS: Taken together, these data suggest that BVES is a novel interacting protein of ANO5, involved in regulation of muscle differentiation.

3.
Front Oncol ; 11: 760789, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34722316

RESUMEN

Acute graft-versus-host disease (GVHD) is the leading cause of non-relapse mortality following allogeneic hematopoietic cell transplantation. The majority of patients non-responsive to front line treatment with steroids have an estimated overall 2-year survival rate of only 10%. Bromodomain and extra-terminal domain (BET) proteins influence inflammatory gene transcription, and therefore represent a potential target to mitigate inflammation central to acute GVHD pathogenesis. Using potent and selective BET inhibitors Plexxikon-51107 and -2853 (PLX51107 and PLX2853), we show that BET inhibition significantly improves survival and reduces disease progression in murine models of acute GVHD without sacrificing the beneficial graft-versus-leukemia response. BET inhibition reduces T cell alloreactive proliferation, decreases inflammatory cytokine production, and impairs dendritic cell maturation both in vitro and in vivo. RNA sequencing studies in human T cells revealed that BET inhibition impacts inflammatory IL-17 and IL-12 gene expression signatures, and Chromatin Immunoprecipitation (ChIP)-sequencing revealed that BRD4 binds directly to the IL-23R gene locus. BET inhibition results in decreased IL-23R expression and function as demonstrated by decreased phosphorylation of STAT3 in response to IL-23 stimulation in human T cells in vitro as well as in mouse donor T cells in vivo. Furthermore, PLX2853 significantly reduced IL-23R+ and pathogenic CD4+ IFNγ+ IL-17+ double positive T cell infiltration in gastrointestinal tissues in an acute GVHD murine model. Our findings identify a role for BET proteins in regulating the IL-23R/STAT3/IL-17 pathway. Based on our preclinical data presented here, PLX51107 will enter clinical trial for refractory acute GVHD in a Phase 1 safety, biological efficacy trial.

4.
Nat Commun ; 12(1): 3719, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-34140489

RESUMEN

Recent advances in base editing have created an exciting opportunity to precisely correct disease-causing mutations. However, the large size of base editors and their inherited off-target activities pose challenges for in vivo base editing. Moreover, the requirement of a protospacer adjacent motif (PAM) nearby the mutation site further limits the targeting feasibility. Here we modify the NG-targeting adenine base editor (iABE-NGA) to overcome these challenges and demonstrate the high efficiency to precisely edit a Duchenne muscular dystrophy (DMD) mutation in adult mice. Systemic delivery of AAV9-iABE-NGA results in dystrophin restoration and functional improvement. At 10 months after AAV9-iABE-NGA treatment, a near complete rescue of dystrophin is measured in mdx4cv mouse hearts with up to 15% rescue in skeletal muscle fibers. The off-target activities remains low and no obvious toxicity is detected. This study highlights the promise of permanent base editing using iABE-NGA for the treatment of monogenic diseases.


Asunto(s)
Sistemas CRISPR-Cas , Distrofina/genética , Edición Génica/métodos , Terapia Genética/métodos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Animales , Línea Celular , Dependovirus , Modelos Animales de Enfermedad , Distrofina/metabolismo , Vectores Genéticos , Humanos , Ratones , Ratones Endogámicos mdx , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Distrofia Muscular de Duchenne/terapia , Mutación , ARN Guía de Kinetoplastida/genética , RNA-Seq
5.
Cell Death Dis ; 11(6): 468, 2020 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-32555216

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

6.
Mol Ther ; 28(7): 1696-1705, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32353322

RESUMEN

Adenine base editor (ABE) is a new generation of genome-editing technology through fusion of Cas9 nickase with an evolved E. coli TadA (TadA∗) and holds great promise as novel genome-editing therapeutics for treating genetic disorders. ABEs can directly convert A-T to G-C in specific genomic DNA targets without introducing double-strand breaks (DSBs). We recently showed that computer program-assisted analysis of Sanger sequencing traces can be used as a low-cost and rapid alternative of deep sequencing to assess base-editing outcomes. Here we developed a rapid fluorescence-based reporter assay (Base Editing ON [BEON]) to quantify ABE efficiency. The assay relies on the restoration of the downstream green fluorescent protein (GFP) in ABE-mediated editing of a stop codon located within the guide RNA (gRNA). We showed that this assay can be used to screen for effective ABE variants, characterize the protospacer adjacent motif (PAM) requirement of a novel NNG-targeting ABE based on ScCas9, and enrich for edited cells. Finally, we demonstrated that the reporter assay allowed us to assess the feasibility of ABE editing to correct point mutations associated with dysferlinopathy. Taken together, the BEON assay would facilitate and simplify the studies with ABEs.


Asunto(s)
Adenina/metabolismo , Adenosina Desaminasa/genética , Proteína 9 Asociada a CRISPR/genética , Proteínas de Escherichia coli/genética , Proteínas Fluorescentes Verdes/metabolismo , Adenosina Desaminasa/metabolismo , Proteína 9 Asociada a CRISPR/metabolismo , Línea Celular , Codón de Terminación , Proteínas de Escherichia coli/metabolismo , Edición Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Células HEK293 , Humanos , ARN Guía de Kinetoplastida/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transfección
7.
JCI Insight ; 5(8)2020 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-32191634

RESUMEN

Acute graft-versus-host disease (aGVHD) is a T cell-mediated immunological disorder and the leading cause of nonrelapse mortality in patients who receive allogeneic hematopoietic cell transplants. Based on recent observations that protein arginine methyltransferase 5 (PRMT5) and arginine methylation are upregulated in activated memory T cells, we hypothesized that PRMT5 is involved in the pathogenesis of aGVHD. Here, we show that PRMT5 expression and enzymatic activity were upregulated in activated T cells in vitro and in T cells from mice developing aGVHD after allogeneic transplant. PRMT5 expression was also upregulated in T cells of patients who developed aGVHD after allogeneic hematopoietic cell transplant compared with those who did not develop aGVHD. PRMT5 inhibition using a selective small-molecule inhibitor (C220) substantially reduced mouse and human allogeneic T cell proliferation and inflammatory IFN-γ and IL-17 cytokine production. Administration of PRMT5 small-molecule inhibitors substantially improves survival, reducing disease incidence and clinical severity in mouse models of aGVHD without adversely affecting engraftment. Importantly, we show that PRMT5 inhibition retained the beneficial graft-versus-leukemia effect by maintaining cytotoxic CD8+ T cell responses. Mechanistically, we show that PRMT5 inhibition potently reduced STAT1 phosphorylation as well as transcription of proinflammatory genes, including interferon-stimulated genes and IL-17. Additionally, PRMT5 inhibition deregulates the cell cycle in activated T cells and disrupts signaling by affecting ERK1/2 phosphorylation. Thus, we have identified PRMT5 as a regulator of T cell responses and as a therapeutic target in aGVHD.


Asunto(s)
Enfermedad Injerto contra Huésped/inmunología , Interferones/inmunología , Activación de Linfocitos/inmunología , Proteína-Arginina N-Metiltransferasas/inmunología , Linfocitos T/inmunología , Animales , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Humanos , Ratones
8.
Cancer Res ; 79(17): 4439-4452, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31273063

RESUMEN

Although EGFR mutant-selective tyrosine kinase inhibitors (TKI) are clinically effective, acquired resistance can occur by reactivating ERK. We show using in vitro models of acquired EGFR TKI resistance with a mesenchymal phenotype that CXCR7, an atypical G protein-coupled receptor, activates the MAPK-ERK pathway via ß-arrestin. Depletion of CXCR7 inhibited the MAPK pathway, significantly attenuated EGFR TKI resistance, and resulted in mesenchymal-to-epithelial transition. CXCR7 overexpression was essential in reactivation of ERK1/2 for the generation of EGFR TKI-resistant persister cells. Many patients with non-small cell lung cancer (NSCLC) harboring an EGFR kinase domain mutation, who progressed on EGFR inhibitors, demonstrated increased CXCR7 expression. These data suggest that CXCR7 inhibition could considerably delay and prevent the emergence of acquired EGFR TKI resistance in EGFR-mutant NSCLC. SIGNIFICANCE: Increased expression of the chemokine receptor CXCR7 constitutes a mechanism of resistance to EGFR TKI in patients with non-small cell lung cancer through reactivation of ERK signaling.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Resistencia a Antineoplásicos , Neoplasias Pulmonares/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Receptores CXCR/metabolismo , Animales , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Transición Epitelial-Mesenquimal/genética , Receptores ErbB/antagonistas & inhibidores , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidad , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/genética , Ratones Transgénicos , Mutación , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/genética , Receptores CXCR/genética , beta-Arrestinas/metabolismo
9.
Mol Ther ; 27(8): 1407-1414, 2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-31129119

RESUMEN

Previous studies from others and us have demonstrated that CRISPR genome editing could offer a promising therapeutic strategy to restore dystrophin expression and function in the skeletal muscle and heart of Duchenne muscular dystrophy (DMD) mouse models. However, the long-term efficacy and safety of CRISPR genome-editing therapy for DMD has not been well established. We packaged both SaCas9 and guide RNA (gRNA) together into one AAVrh.74 vector, injected two such vectors (targeting intron 20 and intron 23, respectively) into mdx pups at day 3 and evaluated the mice at 19 months. We found that AAVrh.74-mediated life-long CRISPR genome editing in mdx mice restored dystrophin expression and improved cardiac function without inducing serious adverse effects. PCR analysis and targeted deep sequencing showed that the DSBs were mainly repaired by the precise ligation of the two cut sites. Serological and histological examination of major vital organs did not reveal any signs of tumor development or other deleterious defects arising from CRISPR genome editing. These results support that in vivo CRISPR genome editing could be developed as a safe therapeutic treatment for DMD and potentially other diseases.


Asunto(s)
Sistemas CRISPR-Cas , Cardiomiopatías/etiología , Dependovirus/genética , Distrofina/genética , Edición Génica , Terapia Genética , Vectores Genéticos/genética , Animales , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Cardiomiopatías/terapia , Reparación del ADN , Modelos Animales de Enfermedad , Distrofina/metabolismo , Técnica del Anticuerpo Fluorescente , Expresión Génica , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Ratones , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/complicaciones , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , ARN Guía de Kinetoplastida/genética , Transducción Genética
10.
Skelet Muscle ; 8(1): 32, 2018 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-30336774

RESUMEN

BACKGROUND: Histological assessment of skeletal muscle sections is important for the research of muscle physiology and diseases. Quantifiable measures of skeletal muscle often include mean fiber diameter, fiber size distribution, and centrally nucleated muscle fibers. These parameters offer insights into the dynamic adaptation of skeletal muscle cells during repeated cycles of degeneration and regeneration associated with many muscle diseases and injuries. Computational programs designed to obtain these parameters would greatly facilitate such efforts and offer significant advantage over manual image analysis, which is very labor-intensive and often subjective. Here, we describe a customized pipeline termed MuscleAnalyzer for muscle histology analysis based upon CellProfiler, a free, open-source software for measuring and analyzing cell images. RESULTS: The MuscleAnalyzer pipeline consists of loading, adjusting, and running a series of image-processing modules provided by CellProfiler. This pipeline was evaluated using wild-type and mdx muscle sections co-stained with laminin (to demarcate the muscle fiber boundaries) and 4',6-diamidino-2-phenylindole (DAPI, to label the nuclei). The immunofluorescence images analyzed using the MuscleAnalyzer pipeline or manually yielded similar results in the number of muscle fibers per image (p = 0.42) and central nucleated fiber (CNF) percentage (p = 0.29) in mdx mice. However, for a total of 67 images, CellProfiler completed the analysis in ~ 10 min on a regular PC while it took an investigator ~ 3 h using the manual approach in order to quantify the number of muscle fibers and CNF. Moreover, the MuscleAnalyzer pipeline also provided the measurement of the cross-sectional area (CSA) and minimal Feret's diameter (MFD) of muscle fibers, and thus fiber size distribution can be plotted. CONCLUSIONS: Our data indicate that the MuscleAnalyzer pipeline can efficiently and accurately analyze laminin and DAPI co-stained muscle images in a batch format and provide quantitative measurements for muscle histological properties such as muscle fiber diameters, fiber size distribution, and CNF percentage.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Músculo Esquelético/patología , Programas Informáticos , Animales , Humanos
11.
J Vis Exp ; (138)2018 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-30124643

RESUMEN

The clustered, regularly interspaced, short, palindromic repeat (CRISPR) system has greatly facilitated genome engineering in both cultured cells and living organisms from a wide variety of species. The CRISPR technology has also been explored as novel therapeutics for a number of human diseases. Proof-of-concept data are highly encouraging as exemplified by recent studies that demonstrate the feasibility and efficacy of gene editing-based therapeutic approach for Duchenne muscular dystrophy (DMD) using a murine model. In particular, intravenous and intraperitoneal injection of the recombinant adeno-associated virus (rAAV) serotype rh.74 (rAAVrh.74) has enabled efficient cardiac delivery of the Staphylococcus aureus CRISPR-associated protein 9 (SaCas9) and two guide RNAs (gRNA) to delete a genomic region with a mutant codon in exon 23 of mouse Dmd gene. This same approach can also be used to knock out the gene-of-interest and study their cardiac function in postnatal mice when the gRNA is designed to target the coding region of the gene. In this protocol, we show in detail how to engineer rAAVrh.74-CRISPR vector and how to achieve highly efficient cardiac delivery in neonatal mice.


Asunto(s)
Sistemas CRISPR-Cas/genética , Distrofina/metabolismo , Edición Génica/métodos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Animales , Humanos , Ratones
12.
Dis Model Mech ; 11(6)2018 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-29871865

RESUMEN

Duchenne muscular dystrophy (DMD) is an X-linked muscle-wasting disorder caused by mutations in the dystrophin gene, with an incidence of 1 in 3500 in new male births. Mdx mice are widely used as an animal model for DMD. However, these mice do not faithfully recapitulate DMD patients in many aspects, rendering the preclinical findings in this model questionable. Although larger animal models of DMD, such as dogs and pigs, have been generated, usage of these animals is expensive and only limited to several facilities in the world. Here, we report the generation of a rabbit model of DMD by co-injection of Cas9 mRNA and sgRNA targeting exon 51 into rabbit zygotes. The DMD knockout (KO) rabbits exhibit the typical phenotypes of DMD, including severely impaired physical activity, elevated serum creatine kinase levels, and progressive muscle necrosis and fibrosis. Moreover, clear pathology was also observed in the diaphragm and heart at 5 months of age, similar to DMD patients. Echocardiography recording showed that the DMD KO rabbits had chamber dilation with decreased ejection fraction and fraction shortening. In conclusion, this novel rabbit DMD model generated with the CRISPR/Cas9 system mimics the histopathological and functional defects in DMD patients, and could be valuable for preclinical studies.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Proteína 9 Asociada a CRISPR/genética , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Distrofina/genética , Edición Génica/métodos , Distrofia Muscular de Duchenne/genética , Animales , Animales Modificados Genéticamente , Proteína 9 Asociada a CRISPR/metabolismo , Cardiomiopatías/genética , Cardiomiopatías/patología , Cardiomiopatías/fisiopatología , Forma MM de la Creatina-Quinasa/sangre , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Distrofina/metabolismo , Fibrosis , Predisposición Genética a la Enfermedad , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Distrofia Muscular de Duchenne/fisiopatología , Contracción Miocárdica , Necrosis , Fenotipo , Conejos , Volumen Sistólico , Factores de Tiempo
13.
Cell Death Dis ; 9(6): 609, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29789544

RESUMEN

Limb girdle muscular dystrophy type 2L (LGMD2L) and Miyoshi myopathy type 3 (MMD3) are autosomal recessive muscular dystrophy caused by mutations in the gene encoding anoctamin-5 (ANO5), which belongs to the anoctamin protein family. Two independent lines of mice with complete disruption of ANO5 transcripts did not exhibit overt muscular dystrophy phenotypes; instead, one of these mice was observed to present with some abnormality in sperm motility. In contrast, a third line of ANO5-knockout (KO) mice with residual expression of truncated ANO5 expression was reported to display defective membrane repair and very mild muscle pathology. Many of the ANO5-related patients carry point mutations or small insertions/deletions (indels) in the ANO5 gene. To more closely mimic the human ANO5 mutations, we engineered mutant ANO5 rabbits via co-injection of Cas9 mRNA and sgRNA into the zygotes. CRISPR-mediated small indels in the exon 12 and/or 13 in the mutant rabbits lead to the development of typical signs of muscular dystrophy with increased serum creatine kinase (CK), muscle necrosis, regeneration, fatty replacement and fibrosis. This novel ANO5 mutant rabbit model would be useful in studying the disease pathogenesis and therapeutic treatments for ANO5-deficient muscular dystrophy.


Asunto(s)
Anoctaminas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Ingeniería Genética , Distrofia Muscular Animal/genética , Mutación/genética , Animales , Secuencia de Bases , Cardiotoxinas/toxicidad , Modelos Animales de Enfermedad , Embrión de Mamíferos/efectos de los fármacos , Embrión de Mamíferos/metabolismo , Músculos/efectos de los fármacos , Músculos/patología , Músculos/fisiopatología , Distrofia Muscular Animal/patología , Distrofia Muscular Animal/fisiopatología , Fenotipo , Conejos , Regeneración/efectos de los fármacos
14.
J Pathol Clin Res ; 4(2): 135-145, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29665321

RESUMEN

Mutations in ANO5 cause several human diseases including gnathodiaphyseal dysplasia 1 (GDD1), limb-girdle muscular dystrophy 2L (LGMD2L), and Miyoshi myopathy 3 (MMD3). Previous work showed that complete genetic disruption of Ano5 in mice did not recapitulate human muscular dystrophy, while residual expression of mutant Ano5 in a gene trapped mouse developed muscular dystrophy with defective membrane repair. This suggests that truncated Ano5 expression may be pathogenic. Here, we screened a panel of commercial anti-Ano5 antibodies using a recombinant adenovirus expressing human Ano5 with FLAG and YFP at the N- and C-terminus, respectively. The monoclonal antibody (mAb) N421A/85 was found to specifically detect human Ano5 by immunoblotting and immunofluorescence staining. The antigen epitope was mapped to a region of 28 residues within the N-terminus. Immunofluorescence staining of muscle cryosections from healthy control subjects showed that Ano5 is localized at the sarcoplasmic reticulum. The muscle biopsy from a LGMD2L patient homozygous for the c.191dupA mutation showed no Ano5 signal, confirming the specificity of the N421A/85 antibody. Surprisingly, strong Ano5 signal was detected in a patient with compound heterozygous mutations (c.191dupA and a novel splice donor site variant c.363 + 4A > G at the exon 6-intron 6 junction). Interestingly, insertion of the mutant intron 6, but not the wild-type intron 6, into human ANO5 cDNA resulted in a major transcript that carried the first 158-bp of intron 6. Transfection of the construct encoding the first 121 amino acids into C2C12 cells resulted in protein aggregate formation, suggesting that aggregate-forming Ano5 peptide may contribute to the pathogenesis of muscular dystrophy.


Asunto(s)
Anoctaminas/genética , Distrofia Muscular de Cinturas/genética , Empalme del ARN , Animales , Anticuerpos Monoclonales , Epítopos/genética , Células HEK293 , Homocigoto , Humanos , Inmunohistoquímica , Intrones/genética , Ratones , Distrofia Muscular de Cinturas/diagnóstico , Distrofia Muscular de Cinturas/patología , Mutación , Péptidos/genética , Agregado de Proteínas , Retículo Sarcoplasmático/metabolismo
15.
Circ Res ; 121(8): 923-929, 2017 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-28790199

RESUMEN

RATIONALE: Duchenne muscular dystrophy is a severe inherited form of muscular dystrophy caused by mutations in the reading frame of the dystrophin gene disrupting its protein expression. Dystrophic cardiomyopathy is a leading cause of death in Duchenne muscular dystrophy patients, and currently no effective treatment exists to halt its progression. Recent advancement in genome editing technologies offers a promising therapeutic approach in restoring dystrophin protein expression. However, the impact of this approach on Duchenne muscular dystrophy cardiac function has yet to be evaluated. Therefore, we assessed the therapeutic efficacy of CRISPR (clustered regularly interspaced short palindromic repeats)-mediated genome editing on dystrophin expression and cardiac function in mdx/Utr+/- mice after a single systemic delivery of recombinant adeno-associated virus. OBJECTIVE: To examine the efficiency and physiological impact of CRISPR-mediated genome editing on cardiac dystrophin expression and function in dystrophic mice. METHODS AND RESULTS: Here, we packaged SaCas9 (clustered regularly interspaced short palindromic repeat-associated 9 from Staphylococcus aureus) and guide RNA constructs into an adeno-associated virus vector and systemically delivered them to mdx/Utr+/- neonates. We showed that CRIPSR-mediated genome editing efficiently excised the mutant exon 23 in dystrophic mice, and immunofluorescence data supported the restoration of dystrophin protein expression in dystrophic cardiac muscles to a level approaching 40%. Moreover, there was a noted restoration in the architecture of cardiac muscle fibers and a reduction in the extent of fibrosis in dystrophin-deficient hearts. The contractility of cardiac papillary muscles was also restored in CRISPR-edited cardiac muscles compared with untreated controls. Furthermore, our targeted deep sequencing results confirmed that our adeno-associated virus-CRISPR/Cas9 strategy was very efficient in deleting the ≈23 kb of intervening genomic sequences. CONCLUSIONS: This study provides evidence for using CRISPR-based genome editing as a potential therapeutic approach for restoring dystrophic cardiomyopathy structurally and functionally.


Asunto(s)
Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas , Cardiomiopatías/terapia , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Distrofina/genética , Edición Génica/métodos , Terapia Genética/métodos , Distrofia Muscular de Duchenne/terapia , Contracción Miocárdica , Músculos Papilares/metabolismo , Animales , Proteínas Asociadas a CRISPR/metabolismo , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Cardiomiopatías/fisiopatología , Dependovirus/genética , Modelos Animales de Enfermedad , Distrofina/metabolismo , Exones , Fibrosis , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Vectores Genéticos , Secuenciación de Nucleótidos de Alto Rendimiento , Ratones Endogámicos mdx , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/fisiopatología , Mutación , Músculos Papilares/patología , Músculos Papilares/fisiopatología , Fenotipo , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , Recuperación de la Función , Utrofina/genética
16.
Nucleic Acids Res ; 45(5): e28, 2017 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-27799472

RESUMEN

Clustered regularly interspaced short palindromic repeat/Cas9 (CRISPR/Cas9) system has emerged in recent years as a highly efficient RNA-guided gene manipulation platform. Simultaneous editing or transcriptional activation/suppression of different genes becomes feasible with the co-delivery of multiple guide RNAs (gRNAs). Here, we report that multiple gRNAs linked with self-cleaving ribozymes and/or tRNA could be simultaneously expressed from a single U6 promoter to exert genome editing of dystrophin and myosin binding protein C3 in human and mouse cells. Moreover, this strategy allows the expression of multiple gRNAs for synergistic transcription activation of follistatin when used with catalytically inactive dCas9-VP64 or dCas9-p300core fusions. Finally, the gRNAs linked by the self-cleaving ribozymes and tRNA could be expressed from RNA polymerase type II (pol II) promoters such as generic CMV and muscle/heart-specific MHCK7. This is particularly useful for in vivo applications when the packaging capacity of recombinant adeno-associated virus is limited while tissue-specific delivery of gRNAs and Cas9 is desired. Taken together, this study provides a novel strategy to enable tissue-specific expression of more than one gRNAs for multiplex gene editing from a single pol II promoter.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , ARN Catalítico/genética , ARN Guía de Kinetoplastida/genética , ARN Nuclear Pequeño/genética , ARN de Transferencia/genética , Animales , Línea Celular , Citomegalovirus/genética , Citomegalovirus/metabolismo , ADN Polimerasa II/genética , ADN Polimerasa II/metabolismo , Distrofina/genética , Distrofina/metabolismo , Folistatina/genética , Folistatina/metabolismo , Células HEK293 , Humanos , Hígado/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Músculo Esquelético/metabolismo , Mioblastos/citología , Mioblastos/metabolismo , Miosinas/genética , Miosinas/metabolismo , Regiones Promotoras Genéticas , ARN Catalítico/metabolismo , ARN Guía de Kinetoplastida/metabolismo , ARN Nuclear Pequeño/metabolismo , ARN de Transferencia/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Activación Transcripcional
17.
Mol Ther ; 24(3): 564-9, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26449883

RESUMEN

Duchenne muscular dystrophy (DMD) is a degenerative muscle disease caused by genetic mutations that lead to the disruption of dystrophin in muscle fibers. There is no curative treatment for this devastating disease. Clustered regularly interspaced short palindromic repeat/Cas9 (CRISPR/Cas9) has emerged as a powerful tool for genetic manipulation and potential therapy. Here we demonstrate that CRIPSR-mediated genome editing efficiently excised a 23-kb genomic region on the X-chromosome covering the mutant exon 23 in a mouse model of DMD, and restored dystrophin expression and the dystrophin-glycoprotein complex at the sarcolemma of skeletal muscles in live mdx mice. Electroporation-mediated transfection of the Cas9/gRNA constructs in the skeletal muscles of mdx mice normalized the calcium sparks in response to osmotic shock. Adenovirus-mediated transduction of Cas9/gRNA greatly reduced the Evans blue dye uptake of skeletal muscles at rest and after downhill treadmill running. This study provides proof evidence for permanent gene correction in DMD.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Distrofina/genética , Distrofina/metabolismo , Edición Génica , Regulación de la Expresión Génica , Genoma , Animales , Sistemas CRISPR-Cas , Señalización del Calcio , Línea Celular , Modelos Animales de Enfermedad , Exones , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , ARN Guía de Kinetoplastida , Sarcolema , Eliminación de Secuencia
18.
Skelet Muscle ; 5: 43, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26693275

RESUMEN

BACKGROUND: Anoctamin 5 (ANO5) is a member of a conserved gene family (TMEM16), which codes for proteins predicted to have eight transmembrane domains and putative Ca(2+)-activated chloride channel (CaCC) activity. It was recently reported that mutations in this gene result in the development of limb girdle muscular dystrophy type 2L (LGMD2L), Miyoshi myopathy type 3 (MMD3), or gnathodiaphyseal dysplasia 1 (GDD1). Currently, there is a lack of animal models for the study of the physiological function of Ano5 and the disease pathology in its absence. RESULTS: Here, we report the generation and characterization of the first Ano5-knockout (KO) mice. Our data demonstrate that the KO mice did not present overt skeletal or cardiac muscle pathology at rest conditions from birth up to 18 months of age. There were no significant differences in force production or force deficit following repeated eccentric contractions between wild type (WT) and KO mice. Although cardiac hypertrophy developed similarly in both KO and WT mice after daily isoproterenol (ISO, 100 mg/kg) treatment via intraperitoneal injection for 2 weeks, they were functionally indiscernible. However, microarray analysis identified the genes involved in lipid metabolism, and complement pathways were altered in the KO skeletal muscle. CONCLUSIONS: Taken together, these data provide the evidence to show that genetic ablation of Ano5 in C57BL/6J mice does not cause overt pathology in skeletal and cardiac muscles, but Ano5 deficiency may lead to altered lipid metabolism and inflammation signaling.

19.
Clin Cancer Res ; 19(22): 6183-92, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24045185

RESUMEN

PURPOSE: Amplification of MYC is one of the most common genetic alterations in lung cancer, contributing to a myriad of phenotypes associated with growth, invasion, and drug resistance. Murine genetics has established both the centrality of somatic alterations of Kras in lung cancer, as well as the dependency of mutant Kras tumors on MYC function. Unfortunately, drug-like small-molecule inhibitors of KRAS and MYC have yet to be realized. The recent discovery, in hematologic malignancies, that bromodomain and extra-terminal (BET) bromodomain inhibition impairs MYC expression and MYC transcriptional function established the rationale of targeting KRAS-driven non-small cell lung cancer (NSCLC) with BET inhibition. EXPERIMENTAL DESIGN: We performed functional assays to evaluate the effects of JQ1 in genetically defined NSCLC cell lines harboring KRAS and/or LKB1 mutations. Furthermore, we evaluated JQ1 in transgenic mouse lung cancer models expressing mutant kras or concurrent mutant kras and lkb1. Effects of bromodomain inhibition on transcriptional pathways were explored and validated by expression analysis. RESULTS: Although JQ1 is broadly active in NSCLC cells, activity of JQ1 in mutant KRAS NSCLC is abrogated by concurrent alteration or genetic knockdown of LKB1. In sensitive NSCLC models, JQ1 treatment results in the coordinate downregulation of the MYC-dependent transcriptional program. We found that JQ1 treatment produces significant tumor regression in mutant kras mice. As predicted, tumors from mutant kras and lkb1 mice did not respond to JQ1. CONCLUSION: Bromodomain inhibition comprises a promising therapeutic strategy for KRAS-mutant NSCLC with wild-type LKB1, via inhibition of MYC function. Clinical studies of BET bromodomain inhibitors in aggressive NSCLC will be actively pursued. Clin Cancer Res; 19(22); 6183-92. ©2013 AACR.


Asunto(s)
Azepinas/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/genética , Factores de Transcripción/antagonistas & inhibidores , Triazoles/farmacología , Proteínas Quinasas Activadas por AMP , Animales , Apoptosis/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias Pulmonares/genética , Ratones , Ratones Noqueados , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas c-myc/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-myc/biosíntesis , Proteínas Proto-Oncogénicas c-myc/genética , Interferencia de ARN , ARN Interferente Pequeño , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA