Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.491
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Cancer ; 15(13): 4060-4071, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38947383

RESUMEN

Background: Current radiotherapy regimens for glioblastoma (GBM) have limited efficacy and fails to eradicate tumors. Regenerative medicine brings hope for repairing damaged tissue, opening opportunities for elevating the maximum acceptable radiation dose. In this study, we explored the effect of ultra-high dose fractionated radiation on tumor responses and brain injury in immunocompetent mice which can better mimic the tumor-host interactions observed in patients. We also evaluated the role of the hypoxia-inducible factor-1 alpha under radiation as potential target for combating radiation-induced brain injury. Methods: Naïve and Hif-1α+/- heterozygous mice received a fractionated daily dose of 20 Gy for three or five consecutive days. Magnetic resonance imaging (MRI) and histology were performed to assess brain injury post-radiation. The 2×105 human GBM1 luciferase-expressing cells were transplanted with tolerance induction protocol. Fractionated radiotherapy was performed during the exponential phase of tumor growth. Bioluminescence imaging, MRI, and immunohistochemistry staining were performed to evaluate tumor growth dynamics and radiotherapy responses. Additionally, animal lifespan was recorded. Results: Fractionated radiation of 5×20 Gy induced severe brain damage, starting 3 weeks after radiation. All animals from this group died within 12 weeks. In contrast, later onset and less severe brain injury were observed starting 12 weeks after radiation of 3×20 Gy. It resulted in complete GBM eradication and survival of all treated animals. Furthermore, Hif-1α+/- mice exhibited more severe vascular damage after fractionated radiation of 3×20 Gy. Conclusion: Ultra-high dose fractionated 3×20 Gy radiation has the potential to fully eradicate GBM cells at the cost of only mild brain injury. The Hif-1α gene is a promising target for ameliorating vascular impairment post-radiation, encouraging the implementation of neurorestorative strategies.

3.
Health Aff (Millwood) ; 43(7): 933-941, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38950305

RESUMEN

The Next Generation Accountable Care Organization (NGACO) model (active during 2016-21) tested the effects of high financial risk, payment mechanisms, and flexible care delivery on health care spending and value for fee-for-service Medicare beneficiaries. We used quasi-experimental methods to examine the model's effects on Medicare Parts A and B spending. Sixty-two ACOs with more than 4.2 million beneficiaries and more than 91,000 practitioners participated in the model. The model was associated with a $270 per beneficiary per year, or approximately $1.7 billion, decline in Medicare spending. After shared savings payments to ACOs were included, the model increased net Medicare spending by $56 per beneficiary per year, or $96.7 million. Annual declines in spending for the model grew over time, reflecting exit by poorer-performing NGACOs, improvement among the remaining NGACOs, and the COVID-19 pandemic. Larger declines in spending occurred among physician practice ACOs and ACOs that elected population-based payments and risk caps greater than 5 percent.


Asunto(s)
Organizaciones Responsables por la Atención , Gastos en Salud , Medicare , Organizaciones Responsables por la Atención/economía , Estados Unidos , Humanos , Medicare/economía , Planes de Aranceles por Servicios/economía , COVID-19/economía , Ahorro de Costo
4.
Front Nutr ; 11: 1348808, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38946791

RESUMEN

The MIND diet is a healthy dietary pattern that has some benefits for many health outcomes. Our study aims to conduct a bibliometric analysis of the MIND diet, identifying leading edges and hotspots to provide a reference for future research. The research on the MIND diet was gathered from the Web of Science Core Collection (WOSCC) database. For bibliometric analysis, VOSviewer 1.6.16 and the WOSCC Online Analysis Platform were utilized. In total, this comprehensive investigation encompassed 171 documents in the field of the MIND diet. The publications are globally distributed, with contributions from 953 authors across 362 institutions in 37 countries/regions, and published in 94 journals. The United States leads with 72 publications, and Iran and the People's Republic of China also show notable engagement with 28 and 19 publications, respectively. Rush University stands out with 21 publications, followed by Harvard University and Tehran University of Medical Sciences, demonstrating their substantial contributions to this field. Martha Clare Morris is a key figure with 10 publications, alongside Klodian Dhana and Puja Agarwal, each contributing 9 publications, highlighting their influence in the MIND diet research. The journal "Nutrients" is a major publication venue with 20 related articles, followed by "Frontiers in Nutrition" and "Journal of Nutrition Health Aging," reflecting their crucial roles in advancing knowledge about the MIND diet. The first high-cited publication was published in Alzheimers & Dementia and conducted by Martha Clare Morris, which focuses on the MIND diet's relationship with Alzheimer's disease prevention and cognitive decline and emphasizes the diet's neuroprotective potential, highlighting how even moderate adherence can substantially reduce Alzheimer's risk and slow cognitive decline. In conclusion, this is the first comprehensive bibliometric study that quantitatively and qualitatively analyzed the publications in the field of the MIND diet. The MIND diet may be a promising dietary pattern for dementia. However, the current evidence is restricted and highlights the urgency and necessity of further research to investigate the efficacy of this diet for cognitive function. In addition, the MIND diet may have some benefits for other health outcomes, including CVDs, cancer, and diabetes. The number of studies in the field of the MIND diet is limited. More studies are needed, and will give us more knowledge about the MIND diet to improve human health, especially for dementia.

5.
Sci Rep ; 14(1): 16165, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39003269

RESUMEN

When conducting spine-related diagnosis and surgery, the three-dimensional (3D) upright posture of the spine under natural weight bearing is of significant clinical value for physicians to analyze the force on the spine. However, existing medical imaging technologies cannot meet current requirements of medical service. On the one hand, the mainstream 3D volumetric imaging modalities (e.g. CT and MRI) require patients to lie down during the imaging process. On the other hand, the imaging modalities conducted in an upright posture (e.g. radiograph) can only realize 2D projections, which lose the valid information of spinal anatomy and curvature. Developments of deep learning-based 3D reconstruction methods bring potential to overcome the limitations of the existing medical imaging technologies. To deal with the limitations of current medical imaging technologies as is described above, in this paper, we propose a novel deep learning framework, ReVerteR, which can realize automatic 3D Reconstruction of Vertebrae from orthogonal bi-planar Radiographs. With the utilization of self-attention mechanism and specially designed loss function combining Dice, Hausdorff, Focal, and MSE, ReVerteR can alleviate the sample-imbalance problem during the reconstruction process and realize the fusion of the centroid annotation and the focused vertebra. Furthermore, aiming at automatic and customized 3D spinal reconstruction in real-world scenarios, we extend ReVerteR to a clinical deployment-oriented framework, and develop an interactive interface with all functions in the framework integrated so as to enhance human-computer interaction during clinical decision-making. Extensive experiments and visualization conducted on our constructed datasets based on two benchmark datasets of spinal CT, VerSe 2019 and VerSe 2020, demonstrate the effectiveness of our proposed ReVerteR. In this paper, we propose an automatic 3D reconstruction method of vertebrae based on orthogonal bi-planar radiographs. With the 3D upright posture of the spine under natural weight bearing effectively constructed, our proposed method is expected to better support doctors make clinical decision during spine-related diagnosis and surgery.


Asunto(s)
Aprendizaje Profundo , Imagenología Tridimensional , Columna Vertebral , Humanos , Imagenología Tridimensional/métodos , Columna Vertebral/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Procesamiento de Imagen Asistido por Computador/métodos
6.
Materials (Basel) ; 17(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38998287

RESUMEN

Traditional deployable truss space structures previously had upper limits on their key indicators, such as the deployed area, folded ratio and total weight, and hence, the application of new extendable mechanisms with novel deployment types is desired. Foldable extendable tape spring booms made from FRP (fiber-reinforced polymer) laminate composites and their corresponding boom-membrane structures were invented in recent years to satisfy the needs of the large-scale requirements of spacecraft, especially for antennas, solar sails and solar arrays. This paper aimed to analyze the properties of the deployed states of extendable tape spring booms and their boom-membrane structures. By establishing an analytical model of the boom and the structure, the bending stiffness, critical buckling load of the boom and the fundamental frequency of the membrane structure were acquired. To provide more guidance on the boom-membrane structure design, a geometric and material parametric study was carried out. Meanwhile, an experimental study to investigate the deployed properties of the booms and membrane structures was introduced to afford some practical verification.

7.
Ecotoxicol Environ Saf ; 282: 116655, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38968871

RESUMEN

Various biological effects of ionizing radiation, especially continuous exposure to low-dose radiation (LDR), have attracted considerable attention. Impaired bone structure caused by LDR has been reported, but little is known about the mechanism involved in the disruption of bone metabolism. In this study, given that LDR was found to (at a cumulative dose of 0.10 Gy) disturb the serum Mg2+ level and Notch1 signal in the mouse femur tissues, the effects of LDR on osteogenesis and the underlying molecular mechanisms were investigated based on an in vitro culture system for bone marrow stromal cells (BMSCs). Our data showed that cumulative LDR suppressed the osteogenic potential in BMSCs as a result of upregulation of Notch1 signaling. Further analyses indicated that the upregulation of NICD1 (Notch1 intracellular domain), the key intracellular domain for Notch1 signaling, under LDR was a consequence of enhanced protein stabilization caused by SUMOylation (small ubiquitin-like modification). Specifically, the downregulation of SENP1 (sentrin/SUMO-specific protease 1) expression induced by LDR enhanced the SUMOylation of NICD1, causing the accumulation of Notch1 signaling, which eventually inhibited the osteogenic potential of BMSCs. In conclusion, this work expounded on the mechanisms underlying the impacts of LDR on bone metabolism and shed light on the research on bone regeneration under radiation.

8.
Front Mol Biosci ; 11: 1375360, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962282

RESUMEN

Background: High altitude de-acclimatization (HADA) is gradually becoming a public health concern as millions of individuals of different occupations migrate to high-altitude areas for work due to economic growth in plateau areas. HADA affects people who return to lower elevations after exposure to high altitudes. It causes significant physiological and functional changes that can negatively impact health and even endanger life. However, uncertainties persist about the detailed mechanisms underlying HADA. Methods: We established a population cohort of individuals with HADA and assessed variations in metabolite composition. Plasm samples of four groups, including subjects staying at plain (P) and high altitude (H) as well as subjects suffering from HADA syndrome with almost no reaction (r3) and mild-to-moderate reaction (R3) after returning to plain from high altitude, were collected and analyzed by Liquid Chromatography-Mass Spectrometry metabolomic. Multivariate statistical analyses were used to explore significant differences and potential clinical prospect of metabolites. Result: Although significantly different on current HADAS diagnostic symptom score, there were no differences in 17 usual clinical indices between r3 and R3. Further multivariate analyses showed isolated clustering distribution of the metabolites among the four groups, suggesting significant differences in their metabolic characteristics. Through K-means clustering analysis, we identified 235 metabolites that exhibited patterns of abundance change consistent with phenotype of HADA syndrome. Pathway enrichment analysis indicated a high influence of polyunsaturated fatty acids under high-altitude conditions. We compared the metabolites between R3 and r3 and found 107 metabolites with differential abundance involved in lipid metabolism and oxidation, suggesting their potential role in the regulation of oxidative stress homeostasis. Among them, four metabolites might play a key role in the occurrence of HADA, including 11-beta-hydroxyandrosterone-3-glucuronide, 5-methoxyindoleacetate, 9,10-epoxyoctadecenoic acid, and PysoPC (20:5). Conclusion: We observed the dynamic variation in the metabolic process of HADA. Levels of four metabolites, which might be provoking HADA mediated through lipid metabolism and oxidation, were expected to be explore prospective indices for HADA. Additionally, metabolomics was more efficient in identifying environmental risk factors than clinical examination when dramatic metabolic disturbances underlying the difference in symptoms were detected, providing new insights into the molecular mechanisms of HADAS.

9.
Cardiovasc Diabetol ; 23(1): 234, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965584

RESUMEN

BACKGROUND: The abnormal low-density protein cholesterol (LDL-C) level in the development of atherosclerosis is often comorbid in individuals with type 2 diabetes mellitus(T2DM). This study aimed to investigate the aggravating effect of abnormal LDL-C levels on coronary artery plaques assessed by coronary computed tomography angiography (CCTA) in T2DM. MATERIALS AND METHODS: This study collected 3439 T2DM patients from September 2011 to February 2022. Comparative analysis of differences in coronary plaque characteristics was performed for the patients between the normal LDL-C level group and the abnormal LDL-C level group. Factors with P < 0.1 in the univariable linear regression analyses were included in the multivariable linear stepwise regression. RESULTS: A total of 2820 eligible T2DM patients were included and identified as the normal LDL-C level group (n = 973) and the abnormal LDL-C level group (n = 1847). Compared with the normal LDL-C level group, both on a per-patient basis and per-segment basis, patients with abnormal LDL-C level showed more calcified plaques, partially calcified plaques, low attenuation plaques, positive remodellings, and spotty calcifications. Multivessel obstructive disease (MVD), nonobstructive stenosis (NOS), obstructive stenosis (OS), plaque involvement degree (PID), segment stenosis score (SSS), and segment involvement scores (SIS) were likely higher in the abnormal LDL-C level group than that in the normal LDL-C level group (P < 0.001). In multivariable linear stepwise regression, the abnormal LDL-C level was validated as an independent positive correlation with high-risk coronary plaques and the degree and extent of stenosis caused by plaques (low attenuation plaque: ß = 0.116; positive remodelling: ß = 0.138; spotty calcification: ß = 0.091; NOS: ß = 0.427; OS: ß = 0.659: SIS: ß = 1.114; SSS: ß = 2.987; PID: ß = 2.716, all P value < 0.001). CONCLUSIONS: Abnormal LDL-C levels aggravate atherosclerotic cardiovascular disease (ASCVD) in patients with T2DM. Clinical attention deserves to be caught by the tailored identification of cardiovascular risk categories in T2DM individuals and the achievement of the corresponding LDL-C treatment goal.


Asunto(s)
Biomarcadores , LDL-Colesterol , Angiografía por Tomografía Computarizada , Angiografía Coronaria , Enfermedad de la Arteria Coronaria , Diabetes Mellitus Tipo 2 , Placa Aterosclerótica , Valor Predictivo de las Pruebas , Calcificación Vascular , Humanos , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/diagnóstico , Masculino , Femenino , Persona de Mediana Edad , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/sangre , Enfermedad de la Arteria Coronaria/epidemiología , Anciano , LDL-Colesterol/sangre , Biomarcadores/sangre , Calcificación Vascular/diagnóstico por imagen , Calcificación Vascular/epidemiología , Calcificación Vascular/sangre , Factores de Riesgo , Medición de Riesgo , Dislipidemias/sangre , Dislipidemias/epidemiología , Dislipidemias/diagnóstico , Estudios Retrospectivos , Vasos Coronarios/diagnóstico por imagen , Índice de Severidad de la Enfermedad , Pronóstico , Estudios Transversales
10.
Biomed Pharmacother ; 177: 117092, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38976956

RESUMEN

BACKGROUND: Sepsis-associated encephalopathy (SAE) is a disease characterized by neuroinflammation and cognitive dysfunction caused by systemic infection. Inflammation-induced microglial activation is closely associated with neuroinflammation in SAE. It is widely understood that melatonin has strong anti-inflammatory and immunomodulatory properties beneficial for sepsis-related brain damage. However, the mechanism of melatonin action in SAE has not been fully elucidated. METHODS: The SAE cell model and SAE mouse model were induced by lipopolysaccharide (LPS). Behavioral tests were performed to analyze cognitive function. Microglial markers and M1/M2 markers were measured by immunofluorescence. Mitophagy was assessed by western blot, mt-Keima and transmission electron microscopy experiments. Immunoprecipitation and co-immunoprecipitation assays investigated the interactions between AMP-activated protein kinase α2 (AMPKα2) and PTEN-induced putative kinase 1 (PINK1). RESULTS: Melatonin suppresses LPS-induced microglia M1 polarization by enhancing mitophagy, thereby attenuating LPS-induced neuroinflammation and behavioral deficits. However, inhibition or knockdown of AMPKα2 can inhibit the enhancement of melatonin on mitophagy, then weaken its promotion of microglia polarization towards M2 phenotype, and eliminate its protective effect on brain function. Furthermore, melatonin enhances mitophagy through activating AMPKα2, promotes PINK1 Ser495 site phosphorylation, and ultimately regulates microglial polarization from M1 to M2. CONCLUSIONS: Our findings demonstrate that melatonin facilitates microglia polarization towards M2 phenotype to alleviate LPS-induced neuroinflammation, primarily through AMPKα2-mediated enhancement of mitophagy.

11.
Front Oncol ; 14: 1426002, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38978730

RESUMEN

Objectives: To assess the comparative efficacy of neoadjuvant chemotherapy followed by surgery (NACT+S) versus concurrent chemoradiotherapy (CCRT) for patients with cervical cancer stages IB2 to IIB. Method: An exhaustive literature search was conducted up to November 2023 in databases including PubMed, Embase, Web of Science, and the Cochrane Library, focusing on disease-free survival (DFS) and overall survival (OS). Data were analyzed using STATA version 15. Results: The meta-analysis included data from two randomized controlled trials and eight retrospective cohort studies, totaling 2,879 patients with stages IB2 to IIB cervical cancer. Pooled data showed no significant difference in OS [hazard ratio (HR) 0.71, 95% confidence interval (CI): 0.51 to 1.00, p = 0.052] and DFS (HR 0.65, 95% CI: 0.38 to 1.14, p = 0.132) between NACT+S and CCRT. Subgroup analysis revealed that NACT+S provided a better OS in Asian populations, retrospective cohort studies, TP regimen chemotherapy, and multivariate analysis. Conclusion: The findings indicate that CCRT and NACT+S are comparably effective for treating cervical cancer stages IB2 to IIB. Notably, in specific subgroups such as Asian patients and those receiving the TP regimen, NACT+S appears to enhance OS.

12.
Neurochem Res ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38916813

RESUMEN

Dysfunction of Schwann cells, including cell apoptosis, autophagy inhibition, dedifferentiation, and pyroptosis, is a pivotal pathogenic factor in induced diabetic peripheral neuropathy (DPN). Histone deacetylases (HDACs) are an important family of proteins that epigenetically regulate gene transcription by affecting chromatin dynamics. Here, we explored the effect of HDAC1 on high glucose-cultured Schwann cells. HDAC1 expression was increased in diabetic mice and high glucose-cultured RSC96 cells, accompanied by cell apoptosis. High glucose also increased the mitochondrial pathway apoptosis-related Bax/Bcl-2 and cleaved caspase-9/caspase-9 ratios and decreased endoplasmic reticulum response-related GRP78, CHOP, and ATF4 expression in RSC96 cells (P < 0.05). Furthermore, overexpression of HDAC1 increased the ratios of Bax/Bcl-2, cleaved caspase-9/caspase-9, and cleaved caspase-3 and reduced the levels of GRP78, CHOP, and ATF4 in RSC96 cells (P < 0.05). In contrast, knockdown of HDAC1 inhibited high glucose-promoted mitochondrial pathway apoptosis and suppressed the endoplasmic reticulum response. Moreover, RNA sequencing revealed that U4 spliceosomal RNA was significantly reduced in HDAC1-overexpressing RSC96 cells. Silencing of U4 spliceosomal RNA led to an increase in Bax/Bcl-2 and cleaved caspase-9 and a decrease in CHOP and ATF4. Conversely, overexpression of U4 spliceosomal RNA blocked HDAC1-promoted mitochondrial pathway apoptosis and inhibited the endoplasmic reticulum response. In addition, alternative splicing analysis of HDAC1-overexpressing RSC96 cells showed that significantly differential intron retention (IR) of Rpl21, Cdc34, and Mtmr11 might be dominant downstream targets that mediate U4 deficiency-induced Schwann cell dysfunction. Taken together, these findings indicate that HDAC1 promotes mitochondrial pathway-mediated apoptosis and inhibits the endoplasmic reticulum stress response in high glucose-cultured Schwann cells by decreasing the U4 spliceosomal RNA/IR of Rpl21, Cdc34, and Mtmr11.

13.
Ecotoxicol Environ Saf ; 281: 116563, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38878560

RESUMEN

Evodiamine (EVO), the main active alkaloid in Evodia rutaecarpa, was shown to exert various pharmacological activities, especially anti-tumor. Currently, it is considered a potential anti-cancer drug due to its excellent anti-tumor activity, which unfortunately has adverse reactions, such as the risk of liver and kidney injury, when Evodia rutaecarpa containing EVO is used clinically. In the present study, we aim to clarify the potential toxic target organs and toxicity mechanism of EVO, an active monomer in Evodia rutaecarpa, and to develop mitigation strategies for its toxicity mechanism. Transcriptome analysis and related experiments showed that the PI3K/Akt pathway induced by calcium overload was an important step in EVO-induced apoptosis of renal cells. Specifically, intracellular calcium ions were increased, and mitochondrial calcium ions were decreased. In addition, EVO-induced calcium overload was associated with TRPV1 receptor activation. In vivo TRPV1 antagonist and calcium chelator effects were observed to significantly reduce body weight loss and renal damage in mice due to EVO toxicity. The potential nephrotoxicity of EVO was further confirmed by an in vivo test. In conclusion, TRPV1-mediated calcium overload-induced apoptosis is one of the mechanisms contributing to the nephrotoxicity of EVO due to its toxicity, whereas maintaining body calcium homeostasis is an effective measure to reduce toxicity. These studies suggest that the clinical use of EVO-containing herbal medicines should pay due attention to the changes in renal function of patients as well as the off-target effects of the drugs.


Asunto(s)
Apoptosis , Calcio , Evodia , Homeostasis , Riñón , Quinazolinas , Quinazolinas/toxicidad , Quinazolinas/farmacología , Animales , Homeostasis/efectos de los fármacos , Calcio/metabolismo , Ratones , Apoptosis/efectos de los fármacos , Riñón/efectos de los fármacos , Riñón/patología , Evodia/química , Masculino , Canales Catiónicos TRPV/metabolismo , Quelantes del Calcio/farmacología
14.
Cardiovasc Diabetol ; 23(1): 217, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38915040

RESUMEN

BACKGROUND: Diabetic peripheral neuropathy (DPN) is the most prevalent complication of diabetes, and has been demonstrated to be independently associated with cardiovascular events and mortality. This aim of this study was to investigate the subclinical left ventricular (LV) myocardial dysfunction in type 2 diabetes mellitus (T2DM) patients with and without DPN. METHODS: One hundred and thirty T2DM patients without DPN, 61 patients with DPN and 65 age and sex-matched controls who underwent cardiovascular magnetic resonance (CMR) imaging were included, all subjects had no symptoms of heart failure and LV ejection fraction ≥ 50%. LV myocardial non-infarct late gadolinium enhancement (LGE) was determined. LV global strains, including radial, circumferential and longitudinal peak strain (PS) and peak systolic and diastolic strain rates (PSSR and PDSR, respectively), were evaluated using CMR feature tracking and compared among the three groups. Multivariable linear regression analyses were performed to determine the independent factors of reduced LV global myocardial strains in T2DM patients. RESULTS: The prevalence of non-infarct LGE was higher in patients with DPN than those without DPN (37.7% vs. 19.2%, p = 0.008). The LV radial and longitudinal PS (radial: 36.60 ± 7.24% vs. 33.57 ± 7.30% vs. 30.72 ± 8.68%; longitudinal: - 15.03 ± 2.52% vs. - 13.39 ± 2.48% vs. - 11.89 ± 3.02%), as well as longitudinal PDSR [0.89 (0.76, 1.05) 1/s vs. 0.80 (0.71, 0.93) 1/s vs. 0.77 (0.63, 0.87) 1/s] were decreased significantly from controls through T2DM patients without DPN to patients with DPN (all p < 0.001). LV radial and circumferential PDSR, as well as circumferential PS were reduced in both patient groups (all p < 0.05), but were not different between the two groups (all p > 0.05). Radial and longitudinal PSSR were decreased in patients with DPN (p = 0.006 and 0.003, respectively) but preserved in those without DPN (all p > 0.05). Multivariable linear regression analyses adjusting for confounders demonstrated that DPN was independently associated with LV radial and longitudinal PS (ß = - 3.025 and 1.187, p = 0.014 and 0.003, respectively) and PDSR (ß = 0.283 and - 0.086, p = 0.016 and 0.001, respectively), as well as radial PSSR (ß = - 0.266, p = 0.007). CONCLUSIONS: There was more severe subclinical LV dysfunction in T2DM patients complicated with DPN than those without DPN, suggesting further prospective study with more active intervention in this cohort of patients.


Asunto(s)
Enfermedades Asintomáticas , Diabetes Mellitus Tipo 2 , Cardiomiopatías Diabéticas , Neuropatías Diabéticas , Imagen por Resonancia Cinemagnética , Valor Predictivo de las Pruebas , Disfunción Ventricular Izquierda , Función Ventricular Izquierda , Humanos , Masculino , Femenino , Persona de Mediana Edad , Disfunción Ventricular Izquierda/fisiopatología , Disfunción Ventricular Izquierda/diagnóstico por imagen , Disfunción Ventricular Izquierda/etiología , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/diagnóstico , Neuropatías Diabéticas/fisiopatología , Neuropatías Diabéticas/diagnóstico por imagen , Neuropatías Diabéticas/etiología , Neuropatías Diabéticas/diagnóstico , Neuropatías Diabéticas/epidemiología , Anciano , Estudios de Casos y Controles , Cardiomiopatías Diabéticas/fisiopatología , Cardiomiopatías Diabéticas/diagnóstico por imagen , Cardiomiopatías Diabéticas/etiología , Factores de Riesgo , Prevalencia , Estudios Transversales , Volumen Sistólico , Contracción Miocárdica
15.
ACS Omega ; 9(21): 22744-22753, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38826525

RESUMEN

The biotransformation of ginsenosides using microorganisms represents a promising and ecofriendly approach for the production of rare ginsenosides. The present study reports on the biotransformation of ginsenoside Rb1 using the fungus Irpex lacteus, resulting in the production of ginsenoside Rd and seven rare ginsenosides with novel structures. Employing high-performance liquid chromatography coupled with high-resolution tandem mass spectrometry, the identities of the transformation products were rapidly determined. Two sets of isomers with molecular weights of 980.56 and 962.55 were discovered among the seven rare ginsenosides, which were generated through the isomerization of the olefin chain in the protopanaxadiol (PPD)-type ginsenoside skeleton. Each isomer exhibited characteristic fragment ions and neutral loss patterns in their tandem mass spectra, providing evidence of their unique structures. Time-course experiments demonstrated that the transformation reaction reached equilibrium after 14 days, with Rb1 initially generating Rd and compound 5, followed by the formation of other rare ginsenosides. The biotransformation process catalyzed by I. lacteus was found to involve not only the typical deglycosylation reaction at the C-20 position but also hydroxylation at the C-22 and C-23 positions, as well as hydrogenation, transfer, and cyclization of the double bond at the C-24(25) position. These enzymatic capabilities extend to the structural modification of other PPD-type ginsenosides such as Rc and Rd, revealing the potential of I. lacteus for the production of a wider range of rare ginsenosides. The transformation activities observed in I. lacteus are unprecedented among fungal biotransformations of ginsenosides. This study highlights the application of a medicinal fungi-based biotransformation strategy for the generation of rare ginsenosides with enhanced structural diversity, thereby expanding the variety of bioactive compounds derived from ginseng.

16.
Ann Saudi Med ; 44(3): 167-182, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38853475

RESUMEN

BACKGROUND: Acute respiratory distress syndrome (ARDS), which results in lung injury as a consequence of sepsis and septic shock, is associated with severe systemic inflammation and is responsible for a high worldwide mortality rate. OBJECTIVE: Investigate whether corticosteroids could benefit clinical outcomes in adult with ARDS. METHODS: A comprehensive search of electronic databases Ovid MEDLINE, Ovid EMbase, and Cochrane Library from their inception to 7 May 2023 was conducted to identify studies that met the eligibility criteria, including only randomized controlled trials. The study was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and the methods of trial sequential analysis. MAIN OUTCOME MEASURES: Mortality rates, including including the 14-, 28-, 45-, and 60-day mortality, hospital mortality, and intensive care unit (ICU) mortality. SAMPLE SIZE: 17 studies with 2508 patients. RESULTS: Data relating to mortality at 14, 28, 45, and 60 days were not significantly different when treatments with corticosteroids and placebo were compared. In terms of hospital and ICU mortality, the mortality of those who had received corticosteroids was significantly lower than that of those who had not. ARDS patients who received assisted ventilation benefited from corticosteroid therapy, as revealed by the significant difference in outcome days between those who received assisted ventilation and those who did not. Corticosteroid had significantly more days free from mechanical ventilation, ICU-free days, and MODS-free days during the first 28 days, but not more organ support-free days up to day 28. CONCLUSION: Although corticosteroid therapy did not reduce mortality rates at different observation periods, it significantly reduced hospital and ICU mortality. Administering corticosteroids to ARDS patients significantly decreased the days of assisted ventilation and time cost consumption. This study confirmed that long-term use of low-dose glucocorticoids may have a positive effect on early ARDS. LIMITATION: Risk of bias due to the differences in patient characteristics.


Asunto(s)
Corticoesteroides , Mortalidad Hospitalaria , Unidades de Cuidados Intensivos , Respiración Artificial , Síndrome de Dificultad Respiratoria , Adulto , Humanos , Corticoesteroides/administración & dosificación , Unidades de Cuidados Intensivos/estadística & datos numéricos , Ensayos Clínicos Controlados Aleatorios como Asunto , Respiración Artificial/estadística & datos numéricos , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Síndrome de Dificultad Respiratoria/mortalidad , Síndrome de Dificultad Respiratoria/etiología , Resultado del Tratamiento
17.
Biotechnol Bioeng ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38923503

RESUMEN

Spinal muscular atrophy (SMA) is a devastating neuromuscular disease caused by mutations in the survival motor neuron 1 (SMN1) gene. Gene editing technology repairs the conversion of the 6th base T to C in exon 7 of the paralogous SMN2 gene, compensating for the SMN protein expression and promoting the survival and function of motor neurons. However, low editing efficiency and unintended off-target effects limit the application of this technology. Here, we optimized a TaC9-adenine base editor (ABE) system by combining Cas9 nickase with the transcription activator-like effector (TALE)-adenosine deaminase fusion protein to effectively and precisely edit SMN2 without detectable Cas9 dependent off-target effects in human cell lines. We also generated human SMA-induced pluripotent stem cells (SMA-iPSCs) through the mutation of the splice acceptor or deletion of the exon 7 of SMN1. TaC9-R10 induced 45% SMN2 T6 > C conversion in the SMA-iPSCs. The SMN2 T6 > C splice-corrected SMA-iPSCs were directionally differentiated into motor neurons, exhibiting SMN protein recovery and antiapoptosis ability. Therefore, the TaC9-ABE system with dual guides from the combination of Cas9 with TALE could be a potential therapeutic strategy for SMA with high efficacy and safety.

18.
FASEB J ; 38(13): e23762, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38923643

RESUMEN

Exosomes play significant roles in the communications between tumor cells and tumor microenvironment. However, the specific mechanisms by which exosomes modulate tumor development under hypoxia in pancreatic neuroendocrine tumors (pNETs) are not well understood. This study aims to investigate these mechanisms and made several important discoveries. We found that hypoxic exosomes derived from pNETs cells can activate tumor-associated macrophages (TAM) to the M2 phenotype, in turn, the M2-polarized TAM, facilitate the migration and invasion of pNETs cells. Further investigation revealed that CEACAM5, a protein highly expressed in hypoxic pNETs cells, is enriched in hypoxic pNETs cell-derived exosomes. Hypoxic exosomal CEACAM5 was observed to induce M2 polarization of TAM through activation of the MAPK signaling pathway. Coculturing pNETs cells with TAM or treated with hypoxic exosomes enhanced the metastatic capacity of pNETs cells. In conclusion, these findings suggest that pNETs cells generate CEACAM5-rich exosomes in a hypoxic microenvironment, which in turn polarize TAM promote malignant invasion of pNETs cells. Targeting exosomal CEACAM5 could potentially serve as a diagnostic and therapeutic strategy for pNETs.


Asunto(s)
Antígenos CD , Exosomas , Proteínas Ligadas a GPI , Metaloproteinasa 9 de la Matriz , Tumores Neuroendocrinos , Neoplasias Pancreáticas , Microambiente Tumoral , Macrófagos Asociados a Tumores , Exosomas/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Humanos , Animales , Tumores Neuroendocrinos/metabolismo , Tumores Neuroendocrinos/patología , Metaloproteinasa 9 de la Matriz/metabolismo , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/patología , Ratones , Línea Celular Tumoral , Antígenos CD/metabolismo , Proteínas Ligadas a GPI/metabolismo , Moléculas de Adhesión Celular/metabolismo , Movimiento Celular , Metástasis de la Neoplasia , Ratones Desnudos , Hipoxia/metabolismo , Hipoxia de la Célula/fisiología , Antígeno Carcinoembrionario
19.
Free Radic Biol Med ; 222: 288-303, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38830513

RESUMEN

Radiation enteritis remains a major challenge for radiotherapy against abdominal and pelvic malignancies. Nevertheless, there is no approved effective therapy to alleviate irradiation (IR)-induced gastrointestinal (GI) toxicity. In the current study, Cannabidiol (CBD) was found to mitigate intestinal injury by GPX4-mediated ferroptosis resistance upon IR exposure. RNA-sequencing was employed to investigate the underlying mechanism involved in the radio-protective effect of CBD, wherein runt-related transcription factor 3 (RUNX3) and its target genes were changed significantly. Further experiment showed that the transactivation of GPX4 triggered by the direct binding of RUNX3 to its promoter region, or by stimulating the transcriptional activity of NF-κB via RUNX3-mediated LILRB3 upregulation was critical for the anti-ferroptotic effect of CBD upon IR injury. Specially, CBD was demonstrated to be a molecular glue skeleton facilitating the heterodimerization of RUNX3 with its transcriptional chaperone core-biding factor ß (CBFß) thereby promoting their nuclear localization and the subsequent transactivation of GPX4 and LILRB3. In short, our study provides an alternative strategy to counteract IR-induced enteritis during the radiotherapy on abdominal/pelvic neoplasms.

20.
J Ethnopharmacol ; 333: 118465, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38944360

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Cistanche deserticola is a kind of parasitic plant living in the roots of desert trees. It is a rare Chinese medicine, which has the effect of tonifying kidney Yang, benefiting essence and blood and moistening the intestinal tract. Cistache deserticola phenylethanoid glycoside (PGS), an active component found in Cistanche deserticola Ma, have potential kidney tonifying, intellectual enhancing, and neuroprotective effects. Cistanche total glycoside capsule has been marketed to treat vascular dementia disease. AIM OF THE STUDY: To identify the potential renal, intellectual enhancing and neuroprotective effects of PGS and explore the exact targets and mechanisms of PGS. MATERIALS AND METHODS: This study systematically investigated the four types of pathways leading to ferroptosis through transcriptome, metabolome, ultrastructure and molecular biology techniques and explored the molecular mechanism by which multiple PGS targets and pathways synergistically exert neuroprotective effects on hypoxia. RESULTS: PGS alleviated learning and memory dysfunction and pathological injury in mice exposed to hypobaric hypoxia by attenuating hypobaric hypoxia-induced hippocampal histopathological damage, impairing blood‒brain barrier integrity, increasing oxidative stress levels, and increasing the expression of cognitive proteins. PGS reduced the formation of lipid peroxides and improved ferroptosis by upregulating the GPX-4/SCL7A311 axis and downregulating the ACSL4/LPCAT3/LOX axis. PGS also reduced ferroptosis by facilitating cellular Fe2+ efflux and regulating mitochondrial Fe2+ transport and effectively antagonized cell ferroptosis induced by erastin (a ferroptosis inducer). CONCLUSIONS: This study demonstrated the mechanism by which PGS prevents hypobaric hypoxic nerve injury through four types of ferroptosis pathways, achieved neuroprotective effects and alleviated learning and memory dysfunction in hypobaric hypoxia mice. This study provides a theoretical basis for the development and application of PGS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA