Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Acta Pharm Sin B ; 14(8): 3457-3475, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39220884

RESUMEN

Tumor metastasis, the apex of cancer progression, poses a formidable challenge in therapeutic endeavors. Circulating tumor cells (CTCs), resilient entities originating from primary tumors or their metastases, significantly contribute to this process by demonstrating remarkable adaptability. They survive shear stress, resist anoikis, evade immune surveillance, and thwart chemotherapy. This comprehensive review aims to elucidate the intricate landscape of CTC formation, metastatic mechanisms, and the myriad factors influencing their behavior. Integral signaling pathways, such as integrin-related signaling, cellular autophagy, epithelial-mesenchymal transition, and interactions with platelets, are examined in detail. Furthermore, we explore the realm of precision nanomedicine design, with a specific emphasis on the anoikis‒platelet interface. This innovative approach strategically targets CTC survival mechanisms, offering promising avenues for combatting metastatic cancer with unprecedented precision and efficacy. The review underscores the indispensable role of the rational design of platelet-based nanomedicine in the pursuit of restraining CTC-driven metastasis.

2.
J Nanobiotechnology ; 22(1): 558, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39267061

RESUMEN

Breast cancer therapy has significantly advanced by targeting the programmed cell death-ligand 1/programmed cell death-1 (PD-L1/PD-1) pathway. BMS-202 (a smallmolecule PD-L1 inhibitor) induces PD-L1 dimerization to block PD-1/PD-L1 interactions, allowing the T-cell-mediated immune response to kill tumor cells. However, immunotherapy alone has limited effects. Clinically approved photodynamic therapy (PDT) activates immunity and selectively targets malignant cells. However, PDT aggravates hypoxia, which may compromise its therapeutic efficacy and promote tumor metastasis. We designed a tumor-specific delivery nanoplatform of liposomes that encapsulate the hypoxia-sensitive antitumor drug tirapazamine (TPZ) and the small-molecule immunosuppressant BMS. New indocyanine green (IR820)-loaded polyethylenimine-folic acid (PEI-FA) was complexed with TPZ and BMS-loaded liposomes via electrostatic interactions to form lipid nanocomposites. This nanoplatform can be triggered by near-infrared irradiation to induce PDT, resulting in a hypoxic tumor environment and activation of the prodrug TPZ to achieve efficient chemotherapy. The in vitro and in vivo studies demonstrated excellent combined PDT, chemotherapy, and immunotherapy effects on the regression of distant tumors and lung metastases, providing a reference method for the preparation of targeted agents for treating breast cancer.


Asunto(s)
Neoplasias de la Mama , Inmunoterapia , Liposomas , Liposomas/química , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/terapia , Inmunoterapia/métodos , Animales , Ratones , Humanos , Línea Celular Tumoral , Fotoquimioterapia/métodos , Verde de Indocianina/química , Verde de Indocianina/uso terapéutico , Verde de Indocianina/análogos & derivados , Ratones Endogámicos BALB C , Tirapazamina/química , Tirapazamina/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Fototerapia/métodos
3.
Front Med (Lausanne) ; 11: 1411279, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39165369

RESUMEN

The pathophysiological mechanisms involved in fibrotic interstitial lung diseases (FILDs) are akin to those observed in idiopathic pulmonary fibrosis (IPF), implying the potential for shared therapeutic approaches. Pirfenidone exhibits antifibrotic and anti-inflammatory properties, making it the first small-molecule drug approved for treating IPF. Pirfenidone has been utilized in IPF treatment for more than one decade. However, guidelines for progressive pulmonary fibrosis (PPF) treatment suggest that further research and evidence are needed to fully comprehend its efficacy and safety across various PPF subtypes. In recent years, numerous studies have explored the use of pirfenidone in treating non-IPF FILD. Herein, we provide an overview of the latest research data on application of pirfenidone in occupational-related ILD, connective tissue disease-associated ILD, post-coronavirus disease-2019 pulmonary fibrosis, and other conditions. We summarize the level of evidence and highlight challenges associated with using pirfenidone in different FILDs to offer clinical guidance.

4.
Eur J Pharm Biopharm ; 203: 114467, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39173934

RESUMEN

Activating the cGAS-STING pathway of circulating tumor cell clusters (CTC clusters) represents a promising strategy to mitigate metastases. To fully exploit the potential of cholesterol-regulating agents in activating CTCs' STING levels, we developed a nanoparticle (NP) composed of metal complex lipid (MCL). This design includes MCL-miriplatin to increase NP stiffness and loads lomitapide (lomi) modulating cholesterol levels, resulting in the creation of PLTs@Pt-lipid@lomi NPs. MCL-miriplatin not only enhances lomi's eliciting efficacy on STING pathway but also increases NPs' stiffness, thus a vital factor affecting the penetration into CTC clusters to further boost lomi's ability. Demonstrated by cy5 tracking experiments, PLTs@Pt-lipid@lomi NPs quickly attach to cancer cell via platelet membrane anchorage, penetrate deep into the spheres, and reach the subcellular endoplasmic reticulum where lomi regulates cholesterol. Additionally, these NPs have been shown to track CTCs in the bloodstream, a capability not demonstrated by the free drug. PLTs@Pt-lipid@lomi NPs more efficiently activate the STING pathway and reduce CTC stemness compared to free lomi. Ultimately, PLTs@Pt-lipid@lomi NPs reduce metastasis in a post-surgery animal model. While cholesterol-regulating agents are limited in efficacy when being repositioned as immunomodulatory agents, this MCL-composing NP strategy demonstrates the potential to effectively deliver these agents to target CTC clusters.


Asunto(s)
Lípidos , Proteínas de la Membrana , Nanopartículas , Células Neoplásicas Circulantes , Animales , Humanos , Nanopartículas/química , Ratones , Células Neoplásicas Circulantes/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Lípidos/química , Línea Celular Tumoral , Femenino , Ratones Endogámicos BALB C , Evasión Inmune/efectos de los fármacos , Colesterol/química
5.
Int J Pharm ; 664: 124625, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39182743

RESUMEN

Triple-negative breast cancer (TNBC) is the most aggressive and fatal subtype of breast cancer with disappointing treatment and high mortality. Tumor microenvironment (TME) plays an important role in the invasion and metastasis of TNBC through multiple complex processes. Most anti-metastatic therapies only focus on cancer cells themselves or interfering with single factors of the metastasis process, which is often related to poor outcomes. Thus, effective TNBC treatment relies on regulating multiple key metastasis-related aspects of the TME. Herein, a self-targeting Metal-Organic Frameworks (MOFs) nanoplatform (named as MTX-PEG@TPL@ZIF-8) was designed to improve treatment of TNBC through tumor microenvironment remodeling and chemotherapy potentiation. The self-targeting MOF nanoplatform is consist of ZIF-8 nanoparticles loaded triptolide (TPL) and followed by the coating with methotrexate-polyethylene glycol conjugates (MTX-PEG). Due to MTX's affinity for the overexpressed folate receptor on tumor cell surfaces, MTX-PEG@TPL@ZIF-8 enables effective accumulation and deep penetration in the tumor area by an MTX-mediated self-targeting strategy. This MOF nanoplatform could promptly release the medication after penetrating the tumor cell, due to pH-triggered degradation. Its anti-metastasis mechanism is to inhibit tumor invasion and metastasis by down-regulating the expression of Vimentin, MMP-2 and MMP-9 and increasing the expression of E-cadherin, upregulation of cleaved caspase-3 and cleaved caspase-9 protein expression promote the apoptosis of tumor cells, thereby reducing their migration. It also downregulated the expression of VEGF and CD31 protein to inhibit the generation of neovascularization. Overall, these findings suggest the self-targeting MOF nanoplatform offers new insights into the treatment of metastatic TNBC by TME remodeling and potentiating chemotherapy.


Asunto(s)
Diterpenos , Compuestos Epoxi , Estructuras Metalorgánicas , Metotrexato , Nanopartículas , Fenantrenos , Polietilenglicoles , Neoplasias de la Mama Triple Negativas , Microambiente Tumoral , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Estructuras Metalorgánicas/química , Microambiente Tumoral/efectos de los fármacos , Femenino , Humanos , Línea Celular Tumoral , Polietilenglicoles/química , Diterpenos/farmacología , Diterpenos/química , Diterpenos/administración & dosificación , Animales , Fenantrenos/farmacología , Fenantrenos/química , Fenantrenos/administración & dosificación , Metotrexato/administración & dosificación , Metotrexato/farmacología , Metotrexato/química , Compuestos Epoxi/química , Compuestos Epoxi/administración & dosificación , Compuestos Epoxi/farmacología , Antineoplásicos/farmacología , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Ratones Endogámicos BALB C , Ratones Desnudos , Ratones , Movimiento Celular/efectos de los fármacos , Metaloproteinasa 2 de la Matriz/metabolismo , Imidazoles
6.
Nanomaterials (Basel) ; 14(7)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38607092

RESUMEN

Colorectal cancer (CRC) is a common malignant tumor, and traditional treatments include surgical resection and radiotherapy. However, local recurrence, distal metastasis, and intestinal obstruction are significant problems. Oral nano-formulation is a promising treatment strategy for CRC. This study introduces physiological and environmental factors, the main challenges of CRC treatment, and the need for a novel oral colon-targeted drug delivery system (OCDDS). This study reviews the research progress of controlled-release, responsive, magnetic, targeted, and other oral nano-formulations in the direction of CRC treatment, in addition to the advantages of oral colon-targeted nano-formulations and concerns about the oral delivery of related therapeutic agents to inspire related research.

7.
J Control Release ; 369: 420-443, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38575075

RESUMEN

Wound healing involves distinct phases, including hemostasis, inflammation, proliferation, and remodeling, which is a complex and dynamic process. Conventional preparations often fail to meet multiple demands and provide prompt information about wound status. Here, a pH/ROS dual-responsive hydrogel (OHA-PP@Z-CA@EGF) was constructed based on oxidized hyaluronic acid (OHA), phenylboronic acid-grafted ε-polylysine (PP), chlorogenic acid (CA)-loaded ZIF-8 (Z-CA), and epidermal growth factor (EGF), which possesses intrinsic antibacterial, antioxidant, and angiogenic capacities. Due to the Schiff base and Phenylboronate ester bonds, the hydrogel exhibited excellent mechanical properties, strong adhesion, good biodegradability, high biocompatibility, stable rheological properties, and self-healing ability. Moreover, introducing Z-CA as an initiator and nanofiller led to the additional cross-linking of hydrogel through coordination bonds, which further improved the mechanical properties and antioxidant capabilities. Bleeding models of liver and tail amputations demonstrated rapid hemostatic properties of the hydrogel. Besides, the hydrogel regulated macrophage phenotypes via the NF-κB/JAK-STAT pathways, relieved oxidative stress, promoted cell migration and angiogenesis, and accelerated diabetic wound healing. The hydrogel also enabled real-time monitoring of the wound healing stages by colorimetric detection. This multifunctional hydrogel opens new avenues for the treatment and management of full-thickness diabetic wounds.


Asunto(s)
Ácido Clorogénico , Hidrogeles , Macrófagos , Nanocompuestos , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Animales , Ácido Clorogénico/administración & dosificación , Ácido Clorogénico/química , Ácido Clorogénico/farmacología , Hidrogeles/química , Nanocompuestos/química , Nanocompuestos/administración & dosificación , Células RAW 264.7 , Ratones , Macrófagos/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/administración & dosificación , Masculino , Fenotipo , Ratas Sprague-Dawley , Polilisina/química , Ácido Hialurónico/química
8.
Pharmaceutics ; 16(4)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38675151

RESUMEN

We have developed an ovarian cancer-targeted drug delivery system based on a follicle-stimulating hormone receptor (FSHR) peptide. The lipophilic chemotherapeutic drug SN38 and the photosensitizer IR820 were loaded into the phospholipid bilayer of liposomes. The combination of chemotherapy and phototherapy has become a promising strategy to improve the therapeutic effect of chemotherapy drugs on solid tumors. IR820 can be used for photodynamic therapy (PDT), effectively converting near-infrared light (NIR) into heat and producing reactive oxygen species (ROS), causing damage to intracellular components and leading to cell death. In addition, PDT generates heat in near-infrared, thereby enhancing the sensitivity of tumors to chemotherapy drugs. FSH liposomes loaded with SN38 and IR820 (SN38/IR820-Lipo@FSH) were prepared using thin-film hydration-sonication. FSH peptide binding was analyzed using 1H NMR spectrum and Maldi-Tof. The average size and zeta potential of SN38/IR820-Lipo@FSH were 105.1 ± 1.15 nm (PDI: 0.204 ± 0.03) and -27.8 ± 0.42 mV, respectively. The encapsulation efficiency of SN38 and IR820 in SN38/IR820-Lipo@FSH liposomes were 90.2% and 91.5%, respectively, and their release was slow in vitro. FSH significantly increased the uptake of liposomes, inhibited cell proliferation, and induced apoptosis in A2780 cells. Moreover, SN38/IR820-Lipo@FSH exhibited better tumor-targeting ability and anti-ovarian cancer activity in vivo when compared with non-targeted SN38/IR820-Lipo. The combination of chemotherapy and photodynamic treatment based on an FSH peptide-targeted delivery system may be an effective approach to treating ovarian cancer.

9.
Biomed Pharmacother ; 170: 116025, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38113625

RESUMEN

Trace elements (TEs) are essential for the treatment of rheumatoid arthritis (RA). This study aimed to prepare a TEs solution enriched with various organic states to evaluate its preventive, therapeutic effects, and mechanism of action in RA and to provide a treatment method for RA treatment. The TEs in natural ore were extracted and added to 0.5% (W/V) L-alanyl-L-glutamine (LG) to obtain a TEs solution (LG-WLYS), which was examined for its concentration and quality. The antioxidant properties and effects of LG-WLYS on cell behavior were evaluated at the cellular level. The preventive and therapeutic effects and mechanism of action of LG-WLYS in rats with RA were explored. The LG-WLYS solution was clear, free from visible foreign matter, and had a pH of 5.33 and an osmolality of 305.67 mOsmol/kg. LG-WLYS inhibited cell migration and angiogenesis. LG-WLYS solution induced macrophages to change from M1-type to M2-type, increased the content of antioxidant enzymes (glutathione, superoxide dismutase, and IL-10), decreased the levels of nitric oxide, malondialdehyde, TNF-α, IL-1ß, IL-6, COX-2, and iNOs, scavenging reactive oxygen species from the lesion site, inhibiting the apoptosis of chondrocytes, regulating inflammatory microenvironment, and decreasing inflammation response to exert the therapeutic effect for RA. In conclusion, LG-WLYS has outstanding therapeutic and preventive effects against RA and has enormous potential for further development.


Asunto(s)
Artritis Reumatoide , Oligoelementos , Ratas , Animales , Oligoelementos/farmacología , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Artritis Reumatoide/tratamiento farmacológico , Macrófagos , Factor de Necrosis Tumoral alfa/farmacología
10.
Acta Pharm Sin B ; 13(8): 3425-3443, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37655335

RESUMEN

The extremely low bioavailability of oral paclitaxel (PTX) mainly due to the complicated gastrointestinal environment, the obstruction of intestinal mucus layer and epithelium barrier. Thus, it is of great significance to construct a coordinative delivery system which can overcome multiple intestinal physicochemical obstacles simultaneously. In this work, a high-density PEGylation-based glycocholic acid-decorated micelles (PTX@GNPs) was constructed by a novel polymer, 9-Fluorenylmethoxycarbonyl-polyethylene glycocholic acid (Fmoc-PEG-GCA). The Fmoc motif in this polymer could encapsulate PTX via π‒π stacking to form the core of micelles, and the low molecular weight and non-long hydrophobic chain of Fmoc ensures the high-density of PEG. Based on this versatile and flexible carriers, PTX@GNPs possess mucus trapping escape ability due to the flexible PEG, and excellent intestine epithelium targeting attributed to the high affinity of GCA with apical sodium-dependent bile acid transporter. The in vitro and in vivo results showed that this oral micelle could enhance oral bioavailability of PTX, and exhibited similar antitumor efficacy to Taxol injection via intravenous route. In addition, oral PTX@GNPs administered with lower dosage within shorter interval could increase in vivo retention time of PTX, which supposed to remodel immune microenvironment and enhance oral chemotherapy efficacy by synergistic effect.

11.
Acta Pharm Sin B ; 13(9): 3659-3677, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37719380

RESUMEN

Peptide‒drug conjugates (PDCs) are drug delivery systems consisting of a drug covalently coupled to a multifunctional peptide via a cleavable linker. As an emerging prodrug strategy, PDCs not only preserve the function and bioactivity of the peptides but also release the drugs responsively with the cleavable property of the linkers. Given the ability to significantly improve the circulation stability and targeting of drugs in vivo and reduce the toxic side effects of drugs, PDCs have already been extensively applied in drug delivery. Herein, we review the types and mechanisms of peptides, linkers and drugs used to construct PDCs, and summarize the clinical applications and challenges of PDC drugs.

12.
Adv Sci (Weinh) ; 10(31): e2303167, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37740428

RESUMEN

Modulating the inflammatory microenvironment can inhibit the process of inflammatory diseases (IDs). A tri-cross-linked inflammatory microenvironment-responsive hydrogel with ideal mechanical properties achieves triggerable and sustained drug delivery and regulates the inflammatory microenvironment. Here, this study develops an inflammatory microenvironment-responsive hydrogel (OD-PP@SeNPs) composed of phenylboronic acid grafted polylysine (PP), oxidized dextran (OD), and selenium nanoparticles (SeNPs). The introduction of SeNPs as initiators and nano-fillers into the hydrogel results in extra cross-linking of the polymer network through hydrogen bonding. Based on Schiff base bonds, Phenylboronate ester bonds, and hydrogen bonds, a reactive oxygen species (ROS)/pH dual responsive hydrogel with a triple-network is achieved. The hydrogel has injectable, self-healing, adhesion, outstanding flexibility, suitable swelling capacity, optimal biodegradability, excellent stimuli-responsive active substance release performance, and prominent biocompatibility. Most importantly, the hydrogel with ROS scavenging and pH-regulating ability protects cells from oxidative stress and induces macrophages into M2 polarization to reduce inflammatory cytokines through PI3K/AKT/NF-κB and MAPK pathways, exerting anti-inflammatory effects and reshaping the inflammatory microenvironment, thereby effectively treating typical IDs, including S. aureus infected wound and rheumatoid arthritis in rats. In conclusion, this dynamically responsive injectable hydrogel with a triple-network structure provides an effective strategy to treat IDs, holding great promise in clinical application.


Asunto(s)
Nanopartículas , Selenio , Animales , Ratas , FN-kappa B , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Hidrogeles , Especies Reactivas de Oxígeno , Staphylococcus aureus , Sistema de Señalización de MAP Quinasas
13.
Pharmaceutics ; 15(8)2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37631371

RESUMEN

A keloid is a benign tumor manifested as abnormal fibroplasia on the surface of the skin. Curing keloids has become a major clinical challenge, and searching for new treatments and medications has become critical. In this study, we developed a LA67 liposome-loaded thermo-sensitive hydrogel (LA67-RL-Gel) with active targeting for treating keloids via peritumoral injection and explored the anti-keloid mechanism. Firstly, Arg-Gly-Asp (RGD) peptide-modified liposomes (LA67-RL) loaded with LA67 were prepared with a particle size of 105.9 nm and a Zeta potential of -27.4 mV, and an encapsulation efficiency of 89.6 ± 3.7%. We then constructed a thermo-sensitive hydrogel loaded with LA67-RL by poloxamer 407 and 188. The formulation was optimized through the Box-Behnken design, where the impact of the proportion of the ingredients on the quality of the hydrogel was evaluated entirely. The optimal formulation was 20.7% P407 and 2.1% P188, and the gelation time at 37 °C was 9.5 s. LA67-RL-Gel slowly released 92.2 ± 0.8% of LA67 at pH 6.5 PBS for 72 h. LA67-RL-Gel increased adhesion with KF cells; increased uptake; promoted KF cells apoptosis; inhibited cell proliferation; reduced α-SMA content; decreased collagen I, collagen III, and fibronectin deposition; inhibited angiogenesis; and modulated the keloid microenvironment, ultimately exerting anti-keloid effects. In summary, this simple, low-cost, and highly effective anti-keloid liposome hydrogel provides a novel approach for treating keloids and deserves further development.

14.
Pharmaceutics ; 15(7)2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37514059

RESUMEN

Prostate cancer (PC) is one of the common malignant tumors of the male genitourinary system. Here, we constructed PTX@ZIF-8, which is a metal-organic-framework-encapsulated drug delivery nanoparticle with paclitaxel (PTX) as a model drug, and further modified the synthesized peptide dimer (Di-PEG2000-COOH) onto the surface of PTX@ZIF-8 to prepare a nanotargeted drug delivery system (Di-PEG@PTX@ZIF-8) for the treatment of prostate cancer. This study investigated the morphology, particle size distribution, zeta potential, drug loading, encapsulation rate, stability, in vitro release behavior, and cytotoxicity of this targeted drug delivery system, and explored the uptake of Di-PEG@PTX@ZIF-8 by human prostate cancer Lncap cells at the in vitro cellular level, as well as the proliferation inhibition and promotion of apoptosis of Lncap cells by the composite nanoparticles. The results suggest that Di-PEG@PTX@ZIF-8, as a zeolitic imidazolate frameworks-8-loaded paclitaxel nanoparticle, has promising potential for the treatment of prostate cancer, which may provide a novel strategy for the delivery system targeting prostate cancer.

15.
Pharmaceutics ; 15(4)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37111722

RESUMEN

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that affects the lives of nearly 1% of the total population worldwide. With the understanding of RA, more and more therapeutic drugs have been developed. However, lots of them possess severe side effects, and gene therapy may be a potential method for RA treatment. A nanoparticle delivery system is vital for gene therapy, as it can keep the nucleic acids stable and enhance the efficiency of transfection in vivo. With the development of materials science, pharmaceutics and pathology, more novel nanomaterials and intelligent strategies are applied to better and safer gene therapy for RA. In this review, we first summarized the existing nanomaterials and active targeting ligands used for RA gene therapy. Then, we introduced various gene delivery systems for RA treatment, which may enlighten the relevant research in the future.

16.
Pharmaceutics ; 15(3)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36986680

RESUMEN

Drug degradation at low pH and rapid clearance from intestinal absorption sites are the main factors limiting the development of oral macromolecular delivery systems. Based on the pH responsiveness and mucosal adhesion of hyaluronic acid (HA) and poly[2-(dimethylamino)ethyl methacrylate] (PDM), we prepared three HA-PDM nano-delivery systems loaded with insulin (INS) using three different molecular weights (MW) of HA (L, M, H), respectively. The three types of nanoparticles (L/H/M-HA-PDM-INS) had uniform particle sizes and negatively charged surfaces. The optimal drug loadings of the L-HA-PDM-INS, M-HA-PDM-INS, H-HA-PDM-INS were 8.69 ± 0.94%, 9.11 ± 1.03%, and 10.61 ± 1.16% (w/w), respectively. The structural characteristics of HA-PDM-INS were determined using FT-IR, and the effect of the MW of HA on the properties of HA-PDM-INS was investigated. The release of INS from H-HA-PDM-INS was 22.01 ± 3.84% at pH 1.2 and 63.23 ± 4.10% at pH 7.4. The protective ability of HA-PDM-INS with different MW against INS was verified by circular dichroism spectroscopy and protease resistance experiments. H-HA-PDM-INS retained 45.67 ± 5.03% INS at pH 1.2 at 2 h. The biocompatibility of HA-PDM-INS, regardless of the MW of HA, was demonstrated using CCK-8 and live-dead cell staining. Compared with the INS solution, the transport efficiencies of L-HA-PDM-INS, M-HA-PDM-INS, and H-HA-PDM-INS increased 4.16, 3.81, and 3.10 times, respectively. In vivo pharmacodynamic and pharmacokinetic studies were performed in diabetic rats following oral administration. H-HA-PDM-INS exhibited an effective hypoglycemic effect over a long period, with relative bioavailability of 14.62%. In conclusion, these simple, environmentally friendly, pH-responsive, and mucoadhesive nanoparticles have the potential for industrial development. This study provides preliminary data support for oral INS delivery.

17.
Food Chem ; 418: 135939, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36948024

RESUMEN

Epigallocatechin gallate (EGCG) has attracted the increasing attention of many researchers, especially in the field of tumor therapy. However, EGCG has poor fat solubility, low stability, low bioavailability, and a high effective dose in vivo. Traditional drug delivery methods are difficult to deliver the water-soluble EGCG efficiently and in high doses to tumor sites. To address these issues, a new type of strategy has been tried in this study to transform EGCG from a "Bioactive natural ingredient" into a "Bioactive drug carrier". Briefly, the EGCG was modified with a fat-soluble 9-fluorene methoxy carbonyl (Fmoc) motif, and the obtained EGCG-Fmoc showed a considerable improvement in lipid solubility and stability. Interestingly, EGCG-Fmoc obtained the characteristic of self-assembly in water, making it easier to take up by tumor cells. Furthermore, the self-assembled nanocomplex exhibited paclitaxel encapsulation performance and could achieve the dual delivery of EGCG and paclitaxel.


Asunto(s)
Catequina , Portadores de Fármacos , Micelas , Paclitaxel , Agua
19.
Int J Nanomedicine ; 17: 6377-6398, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36545220

RESUMEN

Introduction: The blood-brain barrier (BBB) is a key obstacle to the delivery of drugs into the brain. Therefore, it is essential to develop an advanced drug delivery nanoplatform to solve this problem. We previously screened a small rabies virus glycoprotein 15 (RVG15) peptide with 15 amino acids and observed that most of the RVG15-modified nanoparticles entered the brain within 1 h of administration. The high BBB penetrability gives RVG15 great potential for brain-targeted drug delivery systems. Moreover, a multifunctional integrated nanoplatform with a high drug-loading capacity, tunable functionality, and controlled drug release is crucial for tumor treatment. Zeolitic imidazolate framework (ZIF-8) is a promising nanodrug delivery system. Methods: Inspired by the biomimetic concept, we designed RVG15-coated biomimetic ZIF-8 nanoparticles (RVG15-PEG@DTX@ZIF-8) for docetaxel (DTX) delivery to achieve efficient glioblastoma elimination in mice. This bionic nanotherapeutic system was prepared by one-pot encapsulation, followed by coating with RVG15-PEG conjugates. The size, morphology, stability, drug-loading capacity, and release of RVG15-PEG@DTX@ZIF-8 were thoroughly investigated. Additionally, we performed in vitro evaluation, cell uptake capacity, BBB penetration, and anti-migratory ability. We also conducted an in vivo evaluation of the biodistribution and anti-glioma efficacy of this bionic nanotherapeutic system in a mouse mode. Results: In vitro studies showed that, this bionic nanotherapeutic system exhibited excellent targeting efficiency and safety in HBMECs and C6 cells and high efficiency in crossing the BBB. Furthermore, the nanoparticles cause rapid DTX accumulation in the brain, allowing deeper penetration into glioma tumors. In vivo antitumor assay results indicated that RVG15-PEG@DTX@ZIF-8 significantly inhibited glioma growth and metastasis, thereby improving the survival of tumor-bearing mice. Conclusion: Our study demonstrates that our bionic nanotherapeutic system using RVG15 peptides is a promising and powerful tool for crossing the BBB and treating glioblastoma.


Asunto(s)
Glioblastoma , Glioma , Nanopartículas , Ratones , Animales , Barrera Hematoencefálica/metabolismo , Distribución Tisular , Biomimética , Línea Celular Tumoral , Glioblastoma/patología , Sistemas de Liberación de Medicamentos/métodos , Glioma/tratamiento farmacológico , Docetaxel/farmacología , Péptidos/química , Nanopartículas/química
20.
J Control Release ; 350: 652-667, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36063960

RESUMEN

Carbon monoxide (CO) has been regarded as a "silent killer" for its toxicity toward biological systems. However, a low concentration of endogenously produced CO has shown a number of therapeutic benefits such as anti-inflammatory, anti-proliferative, anti-apoptosis, and cytoprotective activities. Carbon monoxide-releasing molecules (CORMs) have been developed as alternatives to direct CO inhalation, which requires a specialized setting for strict dose control. CORMs are efficient CO donors, with central transition metals (such as ruthenium, iron, cobalt, and manganese) surrounded by CO as a ligand. CORMs can stably store and subsequently release their CO payload in the presence of certain triggers including solvent, light, temperature, and ligand substitution. However, CORMs require appropriate delivery strategies to improve short CO release half-life and target specificity. Herein, we highlighted the therapeutic potential of inhalation and CORMs-delivered CO. The applications of conjugate and nanocarrier systems for controlling CO release and improving therapeutic efficacy of CORMs are also described in detail. The review concludes with some of the hurdles that limit clinical translation of CORMs. Keeping in mind the tremendous potential and growing interest in CORMs, this review would be helpful for designing controlled CO release systems for clinical applications.


Asunto(s)
Monóxido de Carbono , Rutenio , Antiinflamatorios , Monóxido de Carbono/uso terapéutico , Cobalto , Hierro , Ligandos , Manganeso , Solventes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA