Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Health Inf Sci Syst ; 12(1): 20, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38455725

RESUMEN

Purpose: The main aim of our study was to explore the utility of artificial intelligence (AI) in diagnosing autism spectrum disorder (ASD). The study primarily focused on using machine learning (ML) and deep learning (DL) models to detect ASD potential cases by analyzing text inputs, especially from social media platforms like Twitter. This is to overcome the ongoing challenges in ASD diagnosis, such as the requirement for specialized professionals and extensive resources. Timely identification, particularly in children, is essential to provide immediate intervention and support, thereby improving the quality of life for affected individuals. Methods: We employed natural language processing (NLP) techniques along with ML models like decision trees, extreme gradient boosting (XGB), k-nearest neighbors algorithm (KNN), and DL models such as recurrent neural networks (RNN), long short-term memory (LSTM), bidirectional long short-term memory (Bi-LSTM), bidirectional encoder representations from transformers (BERT and BERTweet). We extracted a dataset of 404,627 tweets from Twitter users using the platform's API and classified them based on whether they were written by individuals claiming to have ASD (ASD users) or by those without ASD (non-ASD users). From this dataset, we used a subset of 90,000 tweets (45,000 from each classification group) for the training and testing of these models. Results: The application of our AI models yielded promising results, with the predictive model reaching an accuracy of almost 88% when classifying texts that potentially originated from individuals with ASD. Conclusion: Our research demonstrated the potential of using AI, particularly DL models, in enhancing the accuracy of ASD detection and diagnosis. This innovative approach signifies the critical role AI can play in advancing early diagnostic techniques, enabling better patient outcomes and underlining the importance of early identification of ASD, especially in children.

2.
PeerJ Comput Sci ; 9: e1723, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38192446

RESUMEN

Glioblastoma is a highly malignant brain tumor with a life expectancy of only 3-6 months without treatment. Detecting and predicting its survival and grade accurately are crucial. This study introduces a novel approach using transfer learning techniques. Various pre-trained networks, including EfficientNet, ResNet, VGG16, and Inception, were tested through exhaustive optimization to identify the most suitable architecture. Transfer learning was applied to fine-tune these models on a glioblastoma image dataset, aiming to achieve two objectives: survival and tumor grade prediction.The experimental results show 65% accuracy in survival prediction, classifying patients into short, medium, or long survival categories. Additionally, the prediction of tumor grade achieved an accuracy of 97%, accurately differentiating low-grade gliomas (LGG) and high-grade gliomas (HGG). The success of the approach is attributed to the effectiveness of transfer learning, surpassing the current state-of-the-art methods. In conclusion, this study presents a promising method for predicting the survival and grade of glioblastoma. Transfer learning demonstrates its potential in enhancing prediction models, particularly in scenarios with limited large datasets. These findings hold promise for improving diagnostic and treatment approaches for glioblastoma patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA