Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Sci Rep ; 12(1): 1181, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35064130

RESUMEN

The dynamics of ionization waves (IWs) in atmospheric pressure discharges is fundamentally determined by the electric polarity (positive or negative) at which they are generated and by the presence of memory effects, i.e. leftover charges and reactive species that influence subsequent IWs. This work examines and compares positive and negative IWs in pulsed plasma jets (1 [Formula: see text]s on-time), showing the difference in their nature and the different resulting interaction with a dielectric BSO target. For the first time, it is shown that a surface charging memory effect is produced, i.e. that a significant amount of surface charges and electric field remain in the target in between discharge pulses (200 [Formula: see text]s off-time). This memory effect directly impacts IW dynamics and is especially important when using negative electric polarity. The results suggest that the remainder of surface charges is due to the lack of charged particles in the plasma near the target, which avoids a full neutralization of the target. This demonstration and the quantification of the memory effect are possible for the first time by using an unique approach, assessing the electric field inside a dielectric material through the combination of an advanced experimental technique called Mueller polarimetry and state-of-the-art numerical simulations.

2.
Sci Rep ; 10(1): 13580, 2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32788628

RESUMEN

Pockels-based Mueller polarimetry is presented as a novel diagnostic technique for studying time and space-resolved and in-situ the interaction between an organic sample (a layer of onion cells) and non-thermal atmospheric pressure plasma. The effect of plasma is complex, as it delivers electric field, radicals, (UV) radiation, non-uniform in time nor in space. This work shows for the first time that the plasma-surface interaction can be characterized through the induced electric field in an electro-optic crystal (birefringence caused by the Pockels effect) while at the same moment the surface evolution of the targeted sample is monitored (depolarization) which is attached to the crystal. As Mueller polarimetry allows for separate detection of depolarization and birefringence, it is possible to decouple the entangled effects of the plasma. In the sample three spatial regions are identified where the surface evolution of the sample differs. This directly relates to the spatial in-homogeneity of the plasma at the surface characterized through the detected electric field. The method can be applied in the future to investigate plasma-surface interactions for various targets ranging from bio-films, to catalytic surfaces and plastics/polymers.

3.
J Biophotonics ; 13(8): e202000083, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32406967

RESUMEN

Classification of tissues is an important problem in biomedicine. An efficient tissue classification protocol allows, for instance, the guided-recognition of structures through treated images or discriminating between healthy and unhealthy regions (e.g., early detection of cancer). In this framework, we study the potential of some polarimetric metrics, the so-called depolarization spaces, for the classification of biological tissues. The analysis is performed using 120 biological ex vivo samples of three different tissues types. Based on these data collection, we provide for the first time a comparison between these depolarization spaces, as well as with most commonly used depolarization metrics, in terms of biological samples discrimination. The results illustrate the way to determine the set of depolarization metrics which optimizes tissue classification efficiencies. In that sense, the results show the interest of the method which is general, and which can be applied to study multiple types of biological samples, including of course human tissues. The latter can be useful for instance, to improve and to boost applications related to optical biopsy.


Asunto(s)
Imagen Óptica , Humanos , Análisis Espectral
4.
Sci Rep ; 10(1): 2712, 2020 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-32066814

RESUMEN

The plasma-surface interaction is studied for a low temperature helium plasma jet generated at atmospheric pressure using Mueller polarimetry on an electro-optic target. The influence of the AC kHz operating frequency is examined by simultaneously obtaining images of the induced electric field and temperature of the target. The technique offers high sensitivity in the determination of the temperature variation on the level of single degrees. Simultaneously, the evolution of the electric field in the target caused by plasma-driven charge accumulation can be measured with the threshold of the order of 105 V/m. Even though a specific electro-optic crystal is used to obtain the results, they are generally applicable to dielectric targets under exposure of a plasma jet when they are of 0.5 mm thickness, have a dielectric constant greater than 4 and are at floating potential. Other techniques to examine the induced electric field in a target do not exist to the best of our knowledge, making this technique unique and necessary. The influence of the AC kHz operating frequency is important because many plasma jet designs used throughout the world operate at different frequency which changes the time between the ionization waves and hence the leftover species densities and stability of the plasma. Results for our jet show a linear operating regime between 20 and 50 kHz where the ionization waves are stable and the temperature increases linearly by 25 K. The charge deposition and induced electric fields do not increase significantly but the surface area does increase due to an extended surface propagation. Additionally, temperature mapping using a 100 µm GaAs probe of the plasma plume area has revealed a mild heat exchange causing a heating of several degrees of the helium core while the surrounding air slightly cools. This peculiarity is also observed without plasma in the gas plume.

5.
Micromachines (Basel) ; 11(2)2020 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-31991590

RESUMEN

This paper compares anisotropic linear optical properties (linear birefringence, linear dichroism, degree of polarization) and performances (absorption coefficient, thermal stability) of two types of birefringent waveplates fabricated in silica glass by femtosecond laser direct writing. The first type of waveplate is based on birefringence induced by self-organized nanogratings imprinted in the glass. One the other hand, the second design is based on birefringence originating from the stress-field formed around the aforementioned nanogratings. In addition to the provided comparison, the manufacturing of stress-engineered half waveplates in the UV-Visible range, and with mm-size clear aperture and negligible excess losses, is reported. Such results contrast with waveplates made of nanogratings, as the later exhibit significantly higher scattering losses and depolarization effects in the UV-Visible range.

6.
Appl Opt ; 58(33): 9267-9278, 2019 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-31873606

RESUMEN

The transmission of light through low-coverage regular and random arrays of glass-supported silica micropillars of diameters 10-40 µm and height 10 µm is studied experimentally. Angle-resolved measurements of the transmitted intensity are performed at visible wavelengths by either a goniospectrophotometer or a multimodal imaging (Mueller) polarimetric microscope. It is demonstrated that for the regular arrays, the angle-resolved measurements are capable of resolving many of the densely packed diffraction orders that are expected for periodic structures of lattice constants 20-80 µm, but they also display features ("halos" and fringes) that are due to the scattering and guiding of light in individual micropillars or in the supporting glass slides. These latter features are also found in angle-resolved measurements on random arrays of micropillars of the same surface coverage. Finally, we perform a comparison of direct measurements of haze in transmission for our patterned glass samples with what can be calculated from the angle-resolved transmitted intensity measurements. Good agreement between the two types of results is found, which testifies to the accuracy of the angle-resolved measurements that we report.

7.
J Biomed Opt ; 24(7): 1-9, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31347339

RESUMEN

Mueller microscopy studies of fixed unstained histological cuts of human skin models were combined with an analysis of experimental data within the framework of differential Mueller matrix (MM) formalism. A custom-built Mueller polarimetric microscope was used in transmission configuration for the optical measurements of skin tissue model adjacent cuts of various nominal thicknesses (5 to 30 µm). The maps of both depolarization and polarization parameters were calculated from the corresponding microscopic MM images by applying a logarithmic Mueller matrix decomposition (LMMD) pixelwise. The parameters derived from LMMD of measured tissue cuts and the intensity of transmitted light were used for an automated segmentation of microscopy images to delineate dermal and epidermal layers. The quadratic dependence of depolarization parameters and linear dependence of polarization parameters on thickness, as predicted by the theory, was confirmed in our measurements. These findings pave the way toward digital histology with polarized light by presenting the combination of optimal optical markers, which allows mitigating the impact of tissue cut thickness fluctuations and increases the contrast of polarimetric images for tissue diagnostics.


Asunto(s)
Técnicas Histológicas/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen Óptica/métodos , Algoritmos , Humanos , Microscopía de Polarización , Modelos Biológicos , Piel/diagnóstico por imagen
8.
PLoS One ; 14(3): e0213909, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30870523

RESUMEN

Optical methods, as fluorescence microscopy or hyperspectral imaging, are commonly used for plants visualization and characterization. Another powerful collection of optical techniques is the so-called polarimetry, widely used to enhance image contrast in multiple applications. In the botanical applications framework, in spite of some works have already highlighted the depolarizing print that plant structures left on input polarized beams, the potential of polarimetric methods has not been properly exploited. In fact, among the few works dealing with polarization and plants, most of them study light scattered by plants using the Degree of Polarization (DoP) indicator. Other more powerful depolarization metrics are nowadays neglected. In this context, we highlight the potential of different depolarization metrics obtained using the Mueller matrix (MM) measurement: the Depolarization Index and the Indices of Polarimetric Purity. We perform a qualitative and quantitative comparison between DoP- and MM-based images by studying a particular plant, the Hedera maroccana. We show how Mueller-based metrics are generally more suitable in terms of contrast than DoP-based measurements. The potential of polarimetric measurements in the study of plants is highlighted in this work, suggesting they can be applied to the characterization of plants, plant taxonomy, water stress in plants, and other botanical studies.


Asunto(s)
Botánica/métodos , Plantas/anatomía & histología , Botánica/instrumentación , Botánica/estadística & datos numéricos , Hedera/anatomía & histología , Luz , Microscopía de Polarización/métodos , Imagen Óptica/métodos , Hojas de la Planta/anatomía & histología , Dispersión de Radiación
9.
Opt Express ; 27(4): 4758-4768, 2019 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-30876086

RESUMEN

In 1822 A. Fresnel described an experiment to separate a beam of light into its right- and left-circular polarization components using chiral interfaces. Fresnel's experiment combined three crystalline quartz prisms of alternating handedness to achieve a visible macroscopic separation between the two circular components. Such quartz polyprisms were rather popular optical components in XIXth century but today remain as very little known optical devices. This work shows the analogy between Fresnel's experiment and Stern-Gerlach experiment from quantum mechanics since both experiments produce selective deflection of particles (photons in case of Fresnel's method) according to their spin angular momentum. We have studied a historical quartz polyprism with eight chiral interfaces producing a large spatial separation of light by spin. We have also constructed a modified Fresnel biprism to produce smaller separations and we have examined the analogy with Stern-Gerlach apparatus for both strong and weak measurements. The polarimetric analysis of a Fresnel polyprism reveals that it acts as a spin angular momentum analyzer.

10.
J Biophotonics ; 11(4): e201700189, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28981211

RESUMEN

We highlight the interest of using the indices of polarimetric purity (IPPs) to the inspection of biological tissues. The IPPs were recently proposed in the literature and they result in a further synthetization of the depolarizing properties of samples. Compared with standard polarimetric images of biological samples, IPP-based images lead to larger image contrast of some biological structures and to a further physical interpretation of the depolarizing mechanisms inherent to the samples. In addition, unlike other methods, their calculation do not require advanced algebraic operations (as is the case of polar decompositions), and they result in 3 indicators of easy implementation. We also propose a pseudo-colored encoding of the IPP information that leads to an improved visualization of samples. This last technique opens the possibility of tailored adjustment of tissues contrast by using customized pseudo-colored images. The potential of the IPP approach is experimentally highlighted along the manuscript by studying 3 different ex-vivo samples. A significant image contrast enhancement is obtained by using the IPP-based methods, compared to standard polarimetric images.


Asunto(s)
Imagen Óptica , Animales , Miembro Posterior/diagnóstico por imagen , Aumento de la Imagen , Conejos
11.
Opt Lett ; 42(22): 4740-4743, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-29140357

RESUMEN

We demonstrate experimentally the validity of the partial spatial coherence formalism in Mueller polarimetry and show that, in a finite spatial resolution experiment, the measured response is obtained through convolving the theoretical one with the instrument function. The reported results are of primary importance for Mueller imaging systems.

12.
Opt Lett ; 42(20): 4103-4106, 2017 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-29028023

RESUMEN

Transmission Mueller-matrix spectroscopic ellipsometry is applied to femtosecond laser-induced modifications in silica glass in the spectral range of 450-1000 nm. Within a type II regime, the modifications exhibit not only circular dichroism, but also circular birefringence. We suggest that the laser polarization orientation with respect to pulse front tilt determines the amplitude and the sign of the circular properties. By using differential decomposition of the Mueller matrix, optical rotation is revealed for the first time, to the best of our knowledge. A maximum value of the effective optical activity of 143°/mm at 550 nm is found.

13.
Opt Lett ; 42(20): 4155-4158, 2017 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-29028036

RESUMEN

In this work, we discuss the interest of using the indices of polarimetric purity (IPPs) as a criterion for the characterization and classification of depolarizing samples. We prove how differences in the depolarizing capability of samples, not seen by the commonly used depolarization index PΔ, are identified by the IPPs. The above-stated result is analyzed from a theoretical point of view and experimentally verified through a set of polarimetric measurements. We show how the approach presented here can be useful in easily synthetizing depolarizing samples with controlled depolarizing features, just by properly combining low-cost fully polarizing elements (such as linear retarders or polarizers).

14.
J Opt Soc Am A Opt Image Sci Vis ; 34(8): 1309-1314, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-29036094

RESUMEN

We show, both analytically and experimentally, that under common experimental conditions the interference pattern produced in a classic Young's double-slit experiment is indistinguishable from that generated by means of a doubly refracting uniaxial crystal whose optic axis makes a skew angle with the light propagation direction. The equivalence between diffraction and crystal optics interference experiments, taken for granted by Arago and Fresnel in their pioneering research on the interference of polarized light beams, is thus rigorously proven.

15.
Opt Lett ; 42(19): 3900-3903, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28957156

RESUMEN

In this Letter we describe an experiment in which coherent light is sent through a calcite crystal that separates the photons by their polarization. The two beams are then let to superpose, and this recombined beam is used to measure the Mueller matrix of the system. Results are interpreted according to our recent formalism of coherent superposition in material media. This is the first experimental implementation of a Young's experiment with complete polarimetry, and it is demonstrated that our method can be used for the experimental synthesis of optical devices with on-demand optical properties.

16.
J Biomed Opt ; 22(5): 56004, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28492853

RESUMEN

We present mathematical formulas generalizing polarization gating (PG) techniques. PG refers to a collection of imaging methods based on the combination of different controlled polarization channels. In particular, we show how using the measured Mueller matrix (MM) of a sample, a widespread number of PG configurations can be evaluated just from analytical expressions based on the MM coefficients. We also show the interest of controlling the helicity of the states of polarization used for PG-based metrology, as this parameter has an impact in the image contrast of samples. In addition, we highlight the interest of combining PG techniques with tools of data analysis related to the MM formalism, such as the well-known MM decompositions. The method discussed in this work is illustrated with the results of polarimetric measurements done on artificial phantoms and real ex-vivo tissues.


Asunto(s)
Diagnóstico por Imagen/métodos , Modelos Teóricos , Fantasmas de Imagen
17.
Opt Express ; 24(21): 24032-24044, 2016 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-27828235

RESUMEN

The aim of this article is to determine the best dielectric between SiO2, Si3N4 and TiO2 for quantum cascade laser (QCL) passivation layers depending on the operation wavelength. It relies on both Mueller ellipsometry measurement to accurately determine the optical constants (the refractive index n and the extinction coefficient k) of the three dielectrics, and optical simulations to determine the mode overlap with the dielectric and furthermore the modal losses in the passivation layer. The impact of dielectric thermal conductivities are taken into account and shown to be not critical on the laser performances.

18.
Opt Lett ; 41(15): 3487-90, 2016 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-27472600

RESUMEN

We derive the relationships between the elementary polarization properties describing a homogeneous medium within the framework of the differential Jones and Mueller formalisms from transmission polarimetry, and the permittivity tensor of the medium, assumed to be weakly anisotropic. The expressions are illustrated on selected examples and allowed to physically interpret experimental polarimetry data.

19.
Appl Opt ; 55(15): 4060-5, 2016 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-27411132

RESUMEN

We show spectroscopic Mueller-matrix data measured at multiple incidence angles of the scarab beetle C. aurata. A method of regression decomposition can decompose the Mueller matrix into a set of two matrices representing one polarizer and one dielectric reflector. We also report on a tentative decomposition of the beetle C. argenteola using the same method.


Asunto(s)
Algoritmos , Refractometría/métodos , Animales , Escarabajos , Simulación por Computador , Dispersión de Radiación
20.
Appl Opt ; 55(12): 3323-32, 2016 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-27140106

RESUMEN

Mueller ellipsometry in the mid-infrared (IR) spectral range can be used to obtain information about chemical composition through the vibrational spectra of samples. In the case of very thin films (<100 nm), the ellipsometric spectral features due to vibrational absorption are in general quite weak, and sometimes they are hidden by the noise in the measured data. In this work, we present one method based on the use of optical spacers as a tool to enhance the sensitivity of IR Mueller ellipsometry. An optical spacer is a thin film made of a known material which is between the substrate and the layer of interest. We show that, when the thickness of the two layers fulfills a given condition, the spectral features due to vibrational absorptions are enhanced. We explain the enhancement effect in terms of the Airy formula. The theoretical discussion is illustrated with two examples. We analyzed polystyrene thin films deposited on silicon wafers. Some of the wafers were covered by a thin film of thermal silicon dioxide (SiO2), which was used as a spacer. The results show the suitability of the proposed technique to overcome the lack of sensitivity in ellipsometric measurements when it comes to working with either very thin films or materials with low absorption.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA