Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
2.
ACS Nano ; 18(13): 9245-9284, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38502101

RESUMEN

Two-dimensional (2D) layered nanomaterial heterostructures, arising from the combination of 2D materials with other low-dimensional species, feature a large surface area to volume ratio, which provides a high density of active sites for catalytic applications and for (photo)electrocatalysis (PEC). Meanwhile, their electronic band structure and high electrical conductivity enable efficient charge transfer (CT) between the active material and the substrate, which is essential for catalytic activity. In recent years, researchers have demonstrated the potential of a range of 2D material interfaces, such as graphene, graphitic carbon nitride (g-C3N4), metal chalcogenides (MCs), and MXenes, for (photo)electrocatalytic applications. For instance, MCs such as MoS2 and WS2 have shown excellent catalytic activity for hydrogen evolution, while graphene and MXenes have been used for the reduction of carbon dioxide to higher value chemicals. However, despite their great potential, there are still major challenges that need to be addressed to fully realize the potential of 2D materials for PEC. For example, their stability under harsh reaction conditions, as well as their scalability for large-scale production are important factors to be considered. Generating heterojunctions (HJs) by combining 2D layered structures with other nanomaterials is a promising method to improve the photoelectrocatalytic properties of the former. In this review, we inspect thoroughly the recent literature, to demonstrate the significant potential that arises from utilizing 2D layered heterostructures in PEC processes across a broad spectrum of applications, from energy conversion and storage to environmental remediation. With the ongoing research and development, it is likely that the potential of these materials will be fully expressed in the near future.

3.
Nanoscale ; 15(2): 522-531, 2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36511088

RESUMEN

As a semiconductor used for the photocatalytic hydrogen evolution reaction (HER), BiOBr has received intensive attention in recent years. However, the high recombination of photoexcited charge carriers results in poor photocatalytic efficiency. The combination with other photoactive semiconductors might represent a valuable approach to deal with the intrinsic limitations of the material. Given that BiOBr has a 2D structure, we propose a simple liquid-phase exfoliation method to peel BiOBr microspheres into few-layer nanosheets. By tuning the weight ratio between the precursors, we prepare a series of 2D MoS2/BiOBr van der Waals (vdW) heterojunctions and study their behaviour as (photo)electrocatalysts for the HER, finding dramatic differences as a function of weight composition. Moreover, we found that pristine 2D BiOBr and the heterojunctions, with the exception of the 1% MoS2/BiOBr composition, undergo photocorrosion, with BiOBr being reduced to metallic Bi. These findings provide useful guidelines to design novel 2D material-based (photo)electrocatalysts for the production of sustainable fuels.

5.
ChemSusChem ; 15(22): e202201927, 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36328732

RESUMEN

Invited for this month cover is the group of Teresa Gatti at the Justus Liebig University (JLU) in Giessen, Germany, the group of Federico Bella at Politecnico di Torino (POLITO), Italy, and the group of Francesco Lamberti at the University of Padova (UNIPD), also in Italy. The image shows how waste tires can be converted in a conductive carbon powder that undergoes a green processing step to produce carbon electrodes for lead-free perovskite solar cells. Similar devices can be employed to harvest indoor light in order to power the Internet of Things (IoT) ecosystem. The Research Article itself is available at 10.1002/cssc.202201590.


Asunto(s)
Carbono , Ultrasonido , Humanos , Ecosistema , Electrodos
6.
Front Chem ; 10: 1000910, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36186583

RESUMEN

2D materials are interesting flat nanoplatforms for the implementation of different electrochemical processes, due to the high surface area and tunable electronic properties. 2D transition metal dichalcogenides (TMDs) can be produced through convenient top-down liquid-phase exfoliation (LPE) methods and present capacitive behaviour that can be exploited for energy storage applications. However, in their thermodynamically stable 2H crystalline phase, they present poor electrical conductivity, being this phase a purely semiconducting one. Combination with conducting polymers like polyaniline (PANI), into nanohybrids, can provide better properties for the scope. In this work, we report on the preparation of 2D WS2@PANI hybrid materials in which we exploit the LPE TMD nanoflakes as scaffolds, onto which induce the in-situ aniline polymerization and thus achieve porous architectures, with the help of surfactants and sodium chloride acting as templating agents. We characterize these species for their capacitive behaviour in neutral pH, achieving maximum specific capacitance of 160 F/g at a current density of 1 A/g, demonstrating the attractiveness of similar nanohybrids for future use in low-cost, easy-to-make supercapacitor devices.

7.
ChemSusChem ; 15(22): e202201590, 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36073538

RESUMEN

Costs and toxicity concerns are at the center of a heated debate regarding the implementation of perovskite solar cells (PSCs) into commercial products. The first bottleneck could be overcome by eliminating the top metal electrode (generally gold) and the underlying hole transporting material and substituting both with one single thick layer of conductive carbon, as in the so-called carbon-based PSCs (C-PSCs). The second issue, related to the presence of lead, can be tackled by resorting to other perovskite structures based on less toxic metallic components. An interesting case is that of the double perovskite Cs2 AgBiBr6 , which at present still lacks the outstanding optoelectronic performances of the lead-based counterparts but is very stable to environmental factors. In this work, the processing of carbon electrodes onto Cs2 AgBiBr6 -based C-PSCs was reported, starting from an additive-free isopropanol ink of a carbon material obtained from the hydrothermal recycling of waste tires and employing a high-throughput ultrasonic spray coating method in normal environmental conditions. Through this highly sustainable approach that ensures a valuable step from an end-of-life to an end-of-waste status for used tires, devices were obtained delivering a record open circuit voltage of 1.293 V, which might in the future represent ultra-cheap solutions to power the indoor Internet of Things ecosystem.


Asunto(s)
Carbono , Ultrasonido , Ecosistema , Electrodos
8.
J Phys Chem C Nanomater Interfaces ; 126(7): 3569-3581, 2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35242271

RESUMEN

The search for synthetic materials that mimic natural photosynthesis by converting solar energy into other more useful forms of energy is an ever-growing research endeavor. Graphene-based materials, with their exceptional electronic and optical properties, are exemplary candidates for high-efficiency solar energy harvesting devices. High photoactivity can be conveniently achieved by functionalizing graphene with small molecule organic semiconductors whose band-gaps can be tuned by structural modification, leading to interactions between the π-conjugated electronic systems in both the semiconductor and graphene. Here we investigate the ultrafast transient optical properties of a cross-linked graphene-dye (diphenyl-dithiophenediketopyrrolopyrrole) nanohybrid material, in which oligomers of the organic semiconductor dye are covalently bound to a random network of few-layer graphene flakes, and compare the results to those obtained for the reference dye monomer. Using a combination of ultrafast transient absorption and two-dimensional electronic spectroscopy, we provide substantial evidence for photoinduced charge transfer that occurs within 18 ps in the nanohybrid system. Notably, subpicosecond photoinduced torsional relaxation observed in the constituent dye monomer is absent in the cross-linked nanohybrid system. Through density functional theory calculations, we compare the competing effects of covalent bonding, increasing conjugation length, and the presence of multiple graphene flakes. We find evidence that the observed ultrafast charge transfer process occurs through a superexchange mechanism in which the oligomeric dye bridge provides virtual states enabling charge transfer between graphene-dye covalent bond sites.

9.
Nanotechnology ; 33(21)2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35158342

RESUMEN

Silver-bismuth double perovskites are promising replacement materials for lead-based ones in photovoltaic (PV) devices due to the lower toxicity and enhanced stability to environmental factors. In addition, they might even be more suitable for indoor PV, due to the size of their bandgap better matching white LEDs emission. Unfortunately, their optoelectronic performance does not reach that of the lead-based counterparts, because of the indirect nature of the band gap and the high exciton binding energy. One strategy to improve the electronic properties is the dimensional reduction from the 3D to the 2D perovskite structure, which features a direct band gap, as it has been reported for 2D monolayer derivates of Cs2AgBiBr6obtained by substituting Cs+cations with bulky alkylammonium cations. However, a similar dimensional reduction also brings to a band gap opening, limiting light absorption in the visible. In this work, we report on the achievement of a bathochromic shift in the absorption features of a butylammonium-based silver-bismuth bromide monolayer double perovskite through doping with iodide and study the optical properties and stability of the resulting thin films in environmental conditions. These species might constitute the starting point to design future sustainable materials to implement as active components in indoor photovoltaic devices used to power the IoT.

10.
J Phys Chem Lett ; 11(20): 8893-8900, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32996314

RESUMEN

Emphasis was recently placed on the Cs2AgBiBr6 double perovskite as a possible candidate to substitute toxic lead in metal halide perovskites. However, its poor light-emissive features currently make it unsuitable for solid-state lighting. Lanthanide doping is an established strategy to implement luminescence in poorly emissive materials, with the additional advantage of fine-tuning the emission wavelength. We discuss here the impact of Eu and Yb doping on the optical properties of Cs2AgBiBr6 thin films, obtained from the solution processing of hydrothermally synthesized bulk crystalline powders, by combining experiments and density functional theory calculations. Eu(III) incorporation does not lead to the characteristic 5D0 → 7F2 emission feature at 2 eV, while only a weak trap-assisted sub-band gap radiative emission is reported. Oppositely, we demonstrate that incorporated Yb(III) leads to an intense and exclusive photoluminescence emission in the near-infrared as a result of the efficient sensitization of the lanthanide 2F5/2 → 2F7/2 transition.

11.
ACS Appl Mater Interfaces ; 12(27): 30530-30537, 2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32527083

RESUMEN

Metal halide perovskite materials have opened up a great opportunity for high-performance optoelectronic devices owing to their extraordinary optoelectronic properties. More than lead halide ones, stable and nontoxic bismuth halide perovskites exhibit more promise in their future commercialization. In this work, we developed for the first time photodetectors based on full-inorganic Cs3Bi2I9-xBrx perovskites and modulate their performance by varying x in the composition systematically. Among those self-powered photodetectors, those based on Cs3Bi2I6Br3 shows the best performance with excellent photosensitivity of 4.1 × 104 at zero bias as well as the responsivity and detectivity reaching 15 mA/W and 4.6 × 1011 Jones, respectively. More strikingly, the full-inorganic perovskite photodetectors exhibit excellent stability in the ambient environment and can maintain over 96% of the initial value after 100 days owing to the high stability of the core perovskite film. The paper definitely paves an alternative and promising strategy for the design of future commercial photodetectors that are self-powered, stable, nontoxic, etc.

12.
J Nanosci Nanotechnol ; 18(2): 1006-1018, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29448526

RESUMEN

Composites of multi-walled carbon nanotubes (MWCNTs) and poly(3,4-ethylenedioxythiophene) (PEDOT) are attracting the attention of material scientists since more than a decade as potential next-generation optoelectronic materials for their peculiar features, arising from the combination of the intrinsic electrical, thermal and morphological properties of the two components. They are indeed a promising platform for the development of low-cost, portable and environmentally friendly electronic devices such as supercapacitors, sensors and actuators. Here a novel synthetic strategy for their preparation is envisaged, exploiting the possibility to covalently functionalize the external surface of MWCNTs with tailored molecular units, starting from which the growth of the conjugated polymer can be induced oxidatively. The approach demonstrates its value in being able to effectively promote the formation of PEDOT chains in direct contact with the surface of MWCNTs, differently from what results when the monomer is polymerized in the presence of the pristine carbon nanomaterial. In addition, significant differences are found in the physico-chemical properties and electrochemical behavior when MWCNT-PEDOT covalent composites are studied in comparison to a non-covalent analogue, here illustrated in detail. These evidences constitute a starting point for the future development of novel more finely tuned functional materials based on MWCNT-PEDOT composites, featuring the required optoelectronic properties to precisely target the desired application.

13.
Phys Chem Chem Phys ; 19(40): 27716-27724, 2017 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-28984327

RESUMEN

We investigated the photophysical properties of a newly synthesized hybrid material composed of a triphenylamine dye covalently bound to reduced graphene oxide, potentially relevant as a stable photosensitizer in dye-sensitized solar cells. The photophysical characterization has been carried out by means of fluorescence quenching and fluorescence lifetime measurements, complemented by Electron Paramagnetic Resonance (EPR) spectroscopy, aimed at the detailed description of the photoinduced processes occurring in the hybrid and in the mixed hybrid/N-doped TiO2 material. The combined optical/magnetic study unequivocally demonstrates a fast quenching of the dye excited state in the isolated hybrid and an efficient electron transfer to N-doped titania nanopowders. In the latter case, a metastable radical cation on the dye moiety is photogenerated and the corresponding negative charge, an electron, is trapped in defect sites of the doped semiconductor oxide. The spin distribution in the stable radical has been determined by EPR spectroscopy and correlated with DFT calculations.

14.
Nanomedicine (Lond) ; 11(15): 1929-46, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27246559

RESUMEN

AIM: We aimed to set up a self-standing, biomimetic scaffold system able to induce and support per se neuronal differentiation of autologous multipotent cells. MATERIALS & METHODS: We isolated a population of human circulating multipotent cells (hCMCs), and used carbon nanotube/polymer nanocomposite scaffolds to mimic electrical/nanotopographical features of the neural environment, and biomimetic peptides reproducing axon guidance cues from neural proteins. RESULTS: hCMCs showed high degree of stemness and multidifferentiative potential; stimuli from the scaffolds and biomimetic peptides could induce and boost hCMC differentiation toward neuronal lineage despite the absence of exogenously added, specific growth factors. CONCLUSION: This work suggests the scaffold-peptides system combined with autologous hCMCs as a functional biomimetic, self-standing prototype for neural regenerative medicine applications.


Asunto(s)
Células Madre Adultas/citología , Materiales Biomiméticos/química , Células Madre Multipotentes/citología , Nanotubos de Carbono/química , Neuronas/citología , Péptidos/química , Poliésteres/química , Andamios del Tejido/química , Técnicas de Cultivo de Célula , Diferenciación Celular , Proliferación Celular , Niño , Preescolar , Humanos , Lactante , Recién Nacido , Medicina Regenerativa , Ingeniería de Tejidos
15.
J Phys Chem Lett ; 5(13): 2171-6, 2014 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-26279529

RESUMEN

Two crystal polymorphs of a thiophene-phenylene hexamer with bulky terminal substituents are characterized by different molecular conformations and parallel versus herringbone packing. Irrespective of their similar emissive spectra and common H-aggregate features, evidenced by crystal structure analysis and confirmed by solid-phase and excited-state first-principles calculations, their luminescence is relatively high and, for one form, nearly double than that for the other. Interaromatic packing energy contributions are established by quantum chemical calculations and can be compared quantitatively as the same species in different crystal environments is examined. The different luminescence efficiency of the two phases highlights the crucial role of the interaromatic packing for the luminescence properties of polyaromatic oligomers.

16.
Inorg Chem ; 52(6): 3190-7, 2013 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-23461643

RESUMEN

We demonstrate here that, whereas the rhenium(I)-zinc porphyrin dyad fac-[Re(CO)3(bpy)(Zn·4'MPyP)](CF3SO3) [1; 4'MPyP = 5-(4'-pyridyl)-10,15,20-triphenylporphyrin] shows no evidence for photoinduced electron transfer upon excitation in the visible region because the charge-separated state ZnP(+)-Re(-) is almost isoenergetic with the singlet excited state of the zinc porphyrin (ΔG = -0.05 eV), the introduction of electron-withdrawing ethyl ester groups on the bpy ligand significantly improves the thermodynamics of the process (ΔG = -0.42 eV). As a consequence, in the new dyad fac-[Re(CO)3(4,4'-DEC-bpy)(Zn·4'MPyP)](CF3SO3) (4; 4,4'-DEC-bpy = 4,4'-diethoxycarbonyl-2,2'-bipyridine), an efficient and ultrafast intramolecular electron-transfer process occurs from the excited zinc porphyrin to the rhenium unit upon excitation with visible light. Conversely, the introduction of electron-donor tert-butyl groups on the meso-phenyl moieties of the zinc porphyrin has a negligible effect on the photophysics of the system. For dyad 4, the time constants for the charge-separation and charge-recombination processes in solvents of different polarity (PrCN, DCM, and toluene) were measured by an ultrafast time-resolved absorption technique (λ(exc) = 560 nm).

17.
Chem Commun (Camb) ; 47(5): 1616-8, 2011 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-21109900

RESUMEN

According to NMR evidence the metal-mediated sandwich assemblies of porphyrins 2 and 3 undergo in solution a thermally driven motion that resembles that of a stepper: the spontaneous rotational motion of the pyridyl rings is converted into a reciprocating linear motion of the porphyrins.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA