Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Blood Med ; 15: 113-122, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38481741

RESUMEN

Introduction: Purified factor IX (FIX) concentrate (IMMUNINE®, Takeda Manufacturing Austria AG, Vienna, Austria) is indicated for the treatment and prophylaxis of bleeding episodes in patients with congenital hemophilia B. Data on the use of purified FIX concentrate in patients ≤6 years old with congenital hemophilia B are limited. Aim: Document real-world clinical experience with purified FIX concentrate in routine practice for pediatric patients with hemophilia B. Methods: This prospective post-authorization safety surveillance study enrolled patients ≤6 years old with moderate or severe hemophilia B (baseline FIX ≤5%) who were prescribed purified FIX concentrate, as determined by the treating physician. The planned observation period for each patient was either 12 months or ≥50 exposure days, whichever occurred first. The primary endpoints were the occurrence of treatment-related adverse events (AEs) and serious AEs (SAEs), and inhibitor development. Results: Thirteen male patients (mean ± standard deviation age, 3.80 ± 1.76 years) enrolled and received ≥1 treatment with purified FIX concentrate. Thirty-two AEs were reported in 6 patients; 4 were SAEs. No AEs were considered related to purified FIX concentrate. No patients developed inhibitory antibodies. Inhibitor testing was not conducted in 2 patients. Eighteen bleeding episodes were treated with purified FIX concentrate in 6 patients. Hemostatic efficacy was rated as either "excellent" or "good" in all patients with an available rating. Conclusion: No treatment-related AEs were reported, and purified FIX concentrate was shown to be effective in treating and preventing bleeding episodes in pediatric patients ≤6 years old with hemophilia B.

3.
J Exp Med ; 216(5): 1050-1060, 2019 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-30914438

RESUMEN

Studies of allelic variation underlying genetic blood disorders have provided important insights into human hematopoiesis. Most often, the identified pathogenic mutations result in loss-of-function or missense changes. However, assessing the pathogenicity of noncoding variants can be challenging. Here, we characterize two unrelated patients with a distinct presentation of dyserythropoietic anemia and other impairments in hematopoiesis associated with an intronic mutation in GATA1 that is 24 nucleotides upstream of the canonical splice acceptor site. Functional studies demonstrate that this single-nucleotide alteration leads to reduced canonical splicing and increased use of an alternative splice acceptor site that causes a partial intron retention event. The resultant altered GATA1 contains a five-amino acid insertion at the C-terminus of the C-terminal zinc finger and has no observable activity. Collectively, our results demonstrate how altered splicing of GATA1, which reduces levels of the normal form of this master transcription factor, can result in distinct changes in human hematopoiesis.


Asunto(s)
Empalme Alternativo/genética , Anemia Diseritropoyética Congénita/genética , Factor de Transcripción GATA1/genética , Hematopoyesis/genética , Intrones/genética , Mutación Missense , Síndromes Mielodisplásicos/genética , Adulto , Niño , Exones , Células HEK293 , Células Madre Hematopoyéticas/metabolismo , Humanos , Masculino , Síndromes Mielodisplásicos/patología , Sitios de Empalme de ARN/genética , Transcripción Genética/genética , Transfección
5.
Discoveries (Craiova) ; 7(3): e96, 2019 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-32309614

RESUMEN

Diamond-Blackfan anemia (DBA) is a rare congenital bone marrow disorder with mutations in ribosomal protein genes. Several animal models have been developed to study the pathological mechanism of DBA. Previously, we reported that the complete knock-out of both Rpl5 and Rps24 alleles were lethal, while heterozygous Rpl5+/- and Rps24+/- mice showed normal phenotype.  To establish a more efficient mouse model for mimicking DBA symptoms, we have taken advantage of RNAi technology to generate an inducible mouse model utilizing tetracycline-induced down-regulation of Rpl5.    After two weeks of treatment with doxycycline in drinking water, a subset of treated shRNA Rpl5+/- adult mice developed mild anemia while control mice had normal complete blood counts. Similarly, treated shRNA Rpl5+/- mice developed reticulocytopenia and bone marrow erythroblastopenia. Detection of DBA symptoms in these mice make them a valuable DBA model for studying the pathological mechanism underlying DBA and for further assessment of the disease and drug testing for novel therapies.

6.
Am J Hum Genet ; 103(6): 930-947, 2018 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-30503522

RESUMEN

Diamond-Blackfan anemia (DBA) is a rare bone marrow failure disorder that affects 7 out of 1,000,000 live births and has been associated with mutations in components of the ribosome. In order to characterize the genetic landscape of this heterogeneous disorder, we recruited a cohort of 472 individuals with a clinical diagnosis of DBA and performed whole-exome sequencing (WES). We identified relevant rare and predicted damaging mutations for 78% of individuals. The majority of mutations were singletons, absent from population databases, predicted to cause loss of function, and located in 1 of 19 previously reported ribosomal protein (RP)-encoding genes. Using exon coverage estimates, we identified and validated 31 deletions in RP genes. We also observed an enrichment for extended splice site mutations and validated their diverse effects using RNA sequencing in cell lines obtained from individuals with DBA. Leveraging the size of our cohort, we observed robust genotype-phenotype associations with congenital abnormalities and treatment outcomes. We further identified rare mutations in seven previously unreported RP genes that may cause DBA, as well as several distinct disorders that appear to phenocopy DBA, including nine individuals with biallelic CECR1 mutations that result in deficiency of ADA2. However, no new genes were identified at exome-wide significance, suggesting that there are no unidentified genes containing mutations readily identified by WES that explain >5% of DBA-affected case subjects. Overall, this report should inform not only clinical practice for DBA-affected individuals, but also the design and analysis of rare variant studies for heterogeneous Mendelian disorders.


Asunto(s)
Anemia de Diamond-Blackfan/genética , Adolescente , Niño , Preescolar , Estudios de Cohortes , Exoma/genética , Exones/genética , Femenino , Eliminación de Gen , Estudios de Asociación Genética/métodos , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Masculino , Mutación/genética , Fenotipo , Proteínas Ribosómicas/genética , Ribosomas/genética , Análisis de Secuencia de ARN/métodos , Secuenciación del Exoma/métodos
7.
Cell ; 173(1): 90-103.e19, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29551269

RESUMEN

Blood cell formation is classically thought to occur through a hierarchical differentiation process, although recent studies have shown that lineage commitment may occur earlier in hematopoietic stem and progenitor cells (HSPCs). The relevance to human blood diseases and the underlying regulation of these refined models remain poorly understood. By studying a genetic blood disorder, Diamond-Blackfan anemia (DBA), where the majority of mutations affect ribosomal proteins and the erythroid lineage is selectively perturbed, we are able to gain mechanistic insight into how lineage commitment is programmed normally and disrupted in disease. We show that in DBA, the pool of available ribosomes is limited, while ribosome composition remains constant. Surprisingly, this global reduction in ribosome levels more profoundly alters translation of a select subset of transcripts. We show how the reduced translation of select transcripts in HSPCs can impair erythroid lineage commitment, illuminating a regulatory role for ribosome levels in cellular differentiation.


Asunto(s)
Anemia de Diamond-Blackfan/patología , Ribosomas/metabolismo , Regiones no Traducidas 5' , Anemia de Diamond-Blackfan/genética , Proteínas Reguladoras de la Apoptosis/antagonistas & inhibidores , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Células de la Médula Ósea/metabolismo , Células Cultivadas , Femenino , Factor de Transcripción GATA1/genética , Factor de Transcripción GATA1/metabolismo , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Humanos , Masculino , Mutación Missense , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteínas Ribosómicas/antagonistas & inhibidores , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
Biochem Biophys Res Commun ; 495(2): 1839-1845, 2018 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-29225165

RESUMEN

Mutations in genes encoding ribosomal proteins have been identified in Diamond-Blackfan anemia (DBA), a rare genetic disorder that presents with a prominent erythroid phenotype. TP53 has been implicated in the pathophysiology of DBA with ribosomal protein (RP) L11 playing a crucial role in the TP53 response. Interestingly, RPL11 also controls the transcriptional activity of c-Myc, an oncoprotein that positively regulates ribosome biogenesis. In the present study, we analyzed the consequences of rpl11 depletion on erythropoiesis and ribosome biogenesis in zebrafish. As expected, Rpl11-deficient zebrafish exhibited defects in ribosome biogenesis and an anemia phenotype. However, co-inhibition of Tp53 did not alleviate the erythroid aplasia in these fish. Next, we explored the role of c-Myc in RPL11-deficient cellular and animal models. c-Myc and its target nucleolar proteins showed upregulation and increased localization in the head region of Rpl11-deficient zebrafish, where the morphological abnormalities and tp53 expression were more pronounced. Interestingly, in blood cells derived from DBA patients with mutations in RPL11, the biogenesis of ribosomes was defective, but the expression level of c-Myc and its target nucleolar proteins was unchanged. The results suggest a model whereby RPL11 deficiency activates the synthesis of c-Myc target nucleolar proteins, which subsequently triggers a p53 response. These results further demonstrate that the induction of Tp53 mediates the morphological, but not erythroid, defects associated with RPL11 deficiency.


Asunto(s)
Anemia de Diamond-Blackfan/fisiopatología , Proteínas Ribosómicas/deficiencia , Anemia de Diamond-Blackfan/genética , Anemia de Diamond-Blackfan/patología , Animales , Modelos Animales de Enfermedad , Eritropoyesis/genética , Proteínas de Peces/deficiencia , Proteínas de Peces/genética , Genes myc , Genes p53 , Humanos , Mutación , Procesamiento Postranscripcional del ARN , Proteínas Ribosómicas/genética , Pez Cebra
9.
Cell ; 168(6): 1053-1064.e15, 2017 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-28283061

RESUMEN

Cytokines are classically thought to stimulate downstream signaling pathways through monotonic activation of receptors. We describe a severe anemia resulting from a homozygous mutation (R150Q) in the cytokine erythropoietin (EPO). Surprisingly, the EPO R150Q mutant shows only a mild reduction in affinity for its receptor but has altered binding kinetics. The EPO mutant is less effective at stimulating erythroid cell proliferation and differentiation, even at maximally potent concentrations. While the EPO mutant can stimulate effectors such as STAT5 to a similar extent as the wild-type ligand, there is reduced JAK2-mediated phosphorylation of select downstream targets. This impairment in downstream signaling mechanistically arises from altered receptor dimerization dynamics due to extracellular binding changes. These results demonstrate how variation in a single cytokine can lead to biased downstream signaling and can thereby cause human disease. Moreover, we have defined a distinct treatable form of anemia through mutation identification and functional studies.


Asunto(s)
Anemia de Diamond-Blackfan/genética , Anemia de Diamond-Blackfan/patología , Eritropoyetina/genética , Mutación Missense , Transducción de Señal , Anemia de Diamond-Blackfan/terapia , Niño , Consanguinidad , Activación Enzimática , Eritropoyesis , Eritropoyetina/química , Femenino , Humanos , Janus Quinasa 2/metabolismo , Cinética , Masculino , Receptores de Eritropoyetina/química , Receptores de Eritropoyetina/genética , Receptores de Eritropoyetina/metabolismo
10.
Sci Transl Med ; 9(376)2017 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-28179501

RESUMEN

Diamond-Blackfan anemia (DBA) is a congenital disorder characterized by the failure of erythroid progenitor differentiation, severely curtailing red blood cell production. Because many DBA patients fail to respond to corticosteroid therapy, there is considerable need for therapeutics for this disorder. Identifying therapeutics for DBA requires circumventing the paucity of primary patient blood stem and progenitor cells. To this end, we adopted a reprogramming strategy to generate expandable hematopoietic progenitor cells from induced pluripotent stem cells (iPSCs) from DBA patients. Reprogrammed DBA progenitors recapitulate defects in erythroid differentiation, which were rescued by gene complementation. Unbiased chemical screens identified SMER28, a small-molecule inducer of autophagy, which enhanced erythropoiesis in a range of in vitro and in vivo models of DBA. SMER28 acted through autophagy factor ATG5 to stimulate erythropoiesis and up-regulate expression of globin genes. These findings present an unbiased drug screen for hematological disease using iPSCs and identify autophagy as a therapeutic pathway in DBA.


Asunto(s)
Anemia de Diamond-Blackfan/tratamiento farmacológico , Descubrimiento de Drogas , Células Madre Hematopoyéticas/metabolismo , Compuestos Alílicos/farmacología , Anemia de Diamond-Blackfan/patología , Antígenos CD34/metabolismo , Autofagia/efectos de los fármacos , Proteína 5 Relacionada con la Autofagia/metabolismo , Diferenciación Celular/efectos de los fármacos , Reprogramación Celular , Células Eritroides/efectos de los fármacos , Células Eritroides/patología , Eritropoyesis/efectos de los fármacos , Prueba de Complementación Genética , Globinas/metabolismo , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/efectos de los fármacos , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Quinazolinas/farmacología
11.
J Cancer ; 7(1): 32-6, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26722357

RESUMEN

Diamond-Blackfan anemia (DBA) is an inherited bone marrow failure syndrome associated with ribosomal protein (RP) gene mutations. Recent studies have also demonstrated an increased risk of cancer predisposition among DBA patients. In this study, we report the formation of soft tissue sarcoma in the Rpl5 and Rps24 heterozygous mice. Our observation suggests that even though one wild-type allele of the Rpl5 or Rps24 gene prevents anemia in these mice, it still predisposes them to cancer development.

12.
Dis Model Mech ; 8(9): 1013-26, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26398160

RESUMEN

Defects in ribosome biogenesis are associated with a group of diseases called the ribosomopathies, of which Diamond-Blackfan anemia (DBA) is the most studied. Ribosomes are composed of ribosomal proteins (RPs) and ribosomal RNA (rRNA). RPs and multiple other factors are necessary for the processing of pre-rRNA, the assembly of ribosomal subunits, their export to the cytoplasm and for the final assembly of subunits into a ribosome. Haploinsufficiency of certain RPs causes DBA, whereas mutations in other factors cause various other ribosomopathies. Despite the general nature of their underlying defects, the clinical manifestations of ribosomopathies differ. In DBA, for example, red blood cell pathology is especially evident. In addition, individuals with DBA often have malformations of limbs, the face and various organs, and also have an increased risk of cancer. Common features shared among human DBA and animal models have emerged, such as small body size, eye defects, duplication or overgrowth of ectoderm-derived structures, and hematopoietic defects. Phenotypes of ribosomopathies are mediated both by p53-dependent and -independent pathways. The current challenge is to identify differences in response to ribosomal stress that lead to specific tissue defects in various ribosomopathies. Here, we review recent findings in this field, with a particular focus on animal models, and discuss how, in some cases, the different phenotypes of ribosomopathies might arise from differences in the spatiotemporal expression of the affected genes.


Asunto(s)
Anemia de Diamond-Blackfan/fisiopatología , Ribosomas/ultraestructura , Anemia de Diamond-Blackfan/sangre , Anemia de Diamond-Blackfan/genética , Animales , Ciclo Celular , Proliferación Celular , Modelos Animales de Enfermedad , Eritrocitos/patología , Eritropoyesis , Hematopoyesis , Humanos , Inmunidad Innata , Mutación , Neoplasias/metabolismo , Fenotipo , ARN Ribosómico/análisis , Proteínas Ribosómicas/genética , Ribosomas/patología , Proteína p53 Supresora de Tumor/metabolismo
13.
Nat Med ; 20(7): 748-53, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24952648

RESUMEN

Ribosomal protein haploinsufficiency occurs in diverse human diseases including Diamond-Blackfan anemia (DBA), congenital asplenia and T cell leukemia. Yet, how mutations in genes encoding ubiquitously expressed proteins such as these result in cell-type- and tissue-specific defects remains unknown. Here, we identify mutations in GATA1, encoding the critical hematopoietic transcription factor GATA-binding protein-1, that reduce levels of full-length GATA1 protein and cause DBA in rare instances. We show that ribosomal protein haploinsufficiency, the more common cause of DBA, can lead to decreased GATA1 mRNA translation, possibly resulting from a higher threshold for initiation of translation of this mRNA in comparison with other mRNAs. In primary hematopoietic cells from patients with mutations in RPS19, encoding ribosomal protein S19, the amplitude of a transcriptional signature of GATA1 target genes was globally and specifically reduced, indicating that the activity, but not the mRNA level, of GATA1 is decreased in patients with DBA associated with mutations affecting ribosomal proteins. Moreover, the defective hematopoiesis observed in patients with DBA associated with ribosomal protein haploinsufficiency could be partially overcome by increasing GATA1 protein levels. Our results provide a paradigm by which selective defects in translation due to mutations affecting ubiquitous ribosomal proteins can result in human disease.


Asunto(s)
Anemia de Diamond-Blackfan/genética , Factor de Transcripción GATA1/genética , Biosíntesis de Proteínas , Humanos , Mutación , ARN Mensajero/genética , Proteínas Ribosómicas/genética
14.
PLoS Genet ; 10(5): e1004371, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24875531

RESUMEN

Mutations affecting the ribosome lead to several diseases known as ribosomopathies, with phenotypes that include growth defects, cytopenia, and bone marrow failure. Diamond-Blackfan anemia (DBA), for example, is a pure red cell aplasia linked to the mutation of ribosomal protein (RP) genes. Here we show the knock-down of the DBA-linked RPS19 gene induces the cellular self-digestion process of autophagy, a pathway critical for proper hematopoiesis. We also observe an increase of autophagy in cells derived from DBA patients, in CD34+ erythrocyte progenitor cells with RPS19 knock down, in the red blood cells of zebrafish embryos with RP-deficiency, and in cells from patients with Shwachman-Diamond syndrome (SDS). The loss of RPs in all these models results in a marked increase in S6 kinase phosphorylation that we find is triggered by an increase in reactive oxygen species (ROS). We show that this increase in S6 kinase phosphorylation inhibits the insulin pathway and AKT phosphorylation activity through a mechanism reminiscent of insulin resistance. While stimulating RP-deficient cells with insulin reduces autophagy, antioxidant treatment reduces S6 kinase phosphorylation, autophagy, and stabilization of the p53 tumor suppressor. Our data suggest that RP loss promotes the aberrant activation of both S6 kinase and p53 by increasing intracellular ROS levels. The deregulation of these signaling pathways is likely playing a major role in the pathophysiology of ribosomopathies.


Asunto(s)
Anemia de Diamond-Blackfan/genética , Enfermedades de la Médula Ósea/genética , Insuficiencia Pancreática Exocrina/genética , Insulina/metabolismo , Lipomatosis/genética , Proteínas Quinasas S6 Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Anemia de Diamond-Blackfan/patología , Animales , Autofagia/genética , Enfermedades de la Médula Ósea/patología , Eritropoyesis/genética , Insuficiencia Pancreática Exocrina/patología , Regulación del Desarrollo de la Expresión Génica , Humanos , Insulina/genética , Lipomatosis/patología , Mutación , Proteínas Quinasas S6 Ribosómicas/antagonistas & inhibidores , Proteínas Ribosómicas/genética , Síndrome de Shwachman-Diamond , Transducción de Señal/efectos de los fármacos , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo
15.
Blood ; 124(3): 437-40, 2014 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-24735966

RESUMEN

Pearson marrow pancreas syndrome (PS) is a multisystem disorder caused by mitochondrial DNA (mtDNA) deletions. Diamond-Blackfan anemia (DBA) is a congenital hypoproliferative anemia in which mutations in ribosomal protein genes and GATA1 have been implicated. Both syndromes share several features including early onset of severe anemia, variable nonhematologic manifestations, sporadic genetic occurrence, and occasional spontaneous hematologic improvement. Because of the overlapping features and relative rarity of PS, we hypothesized that some patients in whom the leading clinical diagnosis is DBA actually have PS. Here, we evaluated patient DNA samples submitted for DBA genetic studies and found that 8 (4.6%) of 173 genetically uncharacterized patients contained large mtDNA deletions. Only 2 (25%) of the patients had been diagnosed with PS on clinical grounds subsequent to sample submission. We conclude that PS can be overlooked, and that mtDNA deletion testing should be performed in the diagnostic evaluation of patients with congenital anemia.


Asunto(s)
Acil-CoA Deshidrogenasa de Cadena Larga/deficiencia , Anemia de Diamond-Blackfan/diagnóstico , Anemia de Diamond-Blackfan/genética , ADN Mitocondrial/genética , Errores Innatos del Metabolismo Lipídico/diagnóstico , Errores Innatos del Metabolismo Lipídico/genética , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/genética , Enfermedades Musculares/diagnóstico , Enfermedades Musculares/genética , Acil-CoA Deshidrogenasa de Cadena Larga/genética , Niño , Preescolar , Síndromes Congénitos de Insuficiencia de la Médula Ósea , Análisis Mutacional de ADN , Diagnóstico Diferencial , Humanos , Lactante , Mutación , Eliminación de Secuencia
17.
Exp Hematol ; 42(5): 394-403.e4, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24463277

RESUMEN

Diamond-Blackfan anemia (DBA) is a bone marrow failure syndrome linked to mutations in ribosomal protein (RP) genes that result in the impaired proliferation of hematopoietic progenitor cells. The etiology of DBA is not completely understood; however, the ribosomal nature of the genes involved has led to speculation that these mutations may alter the landscape of messenger RNA (mRNA) translation. Here, we performed comparative microarray analysis of polysomal mRNA transcripts isolated from lymphoblastoid cell lines derived from DBA patients carrying various haploinsufficient mutations in either RPS19 or RPL11. Different spectrums of changes were observed depending on the mutant gene, with large differences found in RPS19 cells and very few in RPL11 cells. However, we find that the small number of altered transcripts in RPL11 overlap for the most part with those altered in RPS19 cells. We show specifically that levels of branched-chain aminotransferase-1 (BCAT1) transcripts are significantly decreased on the polysomes of both RPS19 and RPL11 cells and that translation of BCAT1 protein is especially impaired in cells with small RP gene mutations, and we provide evidence that this effect may be due in part to the unusually long 5'UTR of the BCAT1 transcript. The BCAT1 enzyme carries out the final step in the biosynthesis and the first step of degradation of the branched-chain amino acids leucine, isoleucine, and valine. Interestingly, several animal models of DBA have reported that leucine ameliorates the anemia phenotypes generated by RPS19 loss. Our study suggests that RP mutations affect the synthesis of specific proteins involved in regulating amino acid levels that are important for maintaining the normal proliferative capacity of hematopoietic cells.


Asunto(s)
Anemia de Diamond-Blackfan/metabolismo , Haploinsuficiencia , Biosíntesis de Proteínas , Proteínas Ribosómicas/metabolismo , Transaminasas/biosíntesis , Transcripción Genética , Regiones no Traducidas 5'/genética , Anemia de Diamond-Blackfan/genética , Anemia de Diamond-Blackfan/patología , Humanos , Polirribosomas/genética , Polirribosomas/metabolismo , Proteínas Ribosómicas/genética , Transaminasas/genética
18.
Blood ; 122(14): 2487-90, 2013 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-23943650

RESUMEN

Classical 5q- syndrome is an acquired macrocytic anemia of the elderly. Similar to Diamond Blackfan anemia (DBA), an inherited red cell aplasia, the bone marrow is characterized by a paucity of erythroid precursors. RPS14 deletions in combination with other deletions in the region have been implicated as causative of the 5q- syndrome phenotype. We asked whether smaller, less easily detectable deletions could account for a syndrome with a modified phenotype. We employed single-nucleotide polymorphism array genotyping to identify small deletions in patients diagnosed with DBA and other anemias lacking molecular diagnoses. Diminutive mosaic deletions involving RPS14 were identified in a 5-year-old patient with nonclassical DBA and in a 17-year-old patient with myelodysplastic syndrome. Patients with nonclassical DBA and other hypoproliferative anemias may have somatically acquired 5q deletions with RPS14 haploinsufficiency not identified by fluorescence in situ hybridization or cytogenetic testing, thus refining the spectrum of disorders with 5q- deletions.


Asunto(s)
Anemia de Diamond-Blackfan/genética , Anemia Macrocítica/genética , Análisis Citogenético/métodos , Proteínas Ribosómicas/genética , Adolescente , Anemia de Diamond-Blackfan/diagnóstico , Anemia Macrocítica/diagnóstico , Anemia Macrocítica/tratamiento farmacológico , Preescolar , Deleción Cromosómica , Cromosomas Humanos Par 5/genética , Femenino , Genotipo , Humanos , Factores Inmunológicos/uso terapéutico , Lenalidomida , Fenotipo , Polimorfismo de Nucleótido Simple , Reacción en Cadena en Tiempo Real de la Polimerasa , Talidomida/análogos & derivados , Talidomida/uso terapéutico
19.
Hum Genet ; 132(11): 1265-74, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23812780

RESUMEN

Diamond-Blackfan anemia (DBA) is an inherited red blood cell aplasia that usually presents during the first year of life. The main features of the disease are normochromic and macrocytic anemia, reticulocytopenia, and nearly absent erythroid progenitors in the bone marrow. The patients also present with growth retardation and craniofacial, upper limb, heart and urinary system congenital malformations in ~30-50 % of cases. The disease has been associated with point mutations and large deletions in ten ribosomal protein (RP) genes RPS19, RPS24, RPS17, RPL35A, RPL5, RPL11, RPS7, RPS10, RPS26, and RPL26 and GATA1 in about 60-65 % of patients. Here, we report a novel large deletion in RPL15, a gene not previously implicated to be causative in DBA. Like RPL26, RPL15 presents the distinctive feature of being required both for 60S subunit formation and for efficient cleavage of the internal transcribed spacer 1. In addition, we detected five deletions in RP genes in which mutations have been previously shown to cause DBA: one each in RPS19, RPS24, and RPS26, and two in RPS17. Pre-ribosomal RNA processing was affected in cells established from the patients bearing these deletions, suggesting a possible molecular basis for their pathological effect. These data identify RPL15 as a new gene involved in DBA and further support the presence of large deletions in RP genes in DBA patients.


Asunto(s)
Anemia de Diamond-Blackfan/genética , Eliminación de Gen , Proteínas Ribosómicas/genética , Hibridación Genómica Comparativa , Variaciones en el Número de Copia de ADN , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Mutación , ARN Ribosómico/análisis , ARN Ribosómico/genética , ARN Interferente Pequeño , Proteínas Ribosómicas/metabolismo
20.
J Clin Invest ; 122(7): 2439-43, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22706301

RESUMEN

Diamond-Blackfan anemia (DBA) is a hypoplastic anemia characterized by impaired production of red blood cells, with approximately half of all cases attributed to ribosomal protein gene mutations. We performed exome sequencing on two siblings who had no known pathogenic mutations for DBA and identified a mutation in the gene encoding the hematopoietic transcription factor GATA1. This mutation, which occurred at a splice site of the GATA1 gene, impaired production of the full-length form of the protein. We further identified an additional patient carrying a distinct mutation at the same splice site of the GATA1 gene. These findings provide insight into the pathogenesis of DBA, showing that the reduction in erythropoiesis associated with the disease can arise from causes other than defects in ribosomal protein genes. These results also illustrate the multifactorial role of GATA1 in human hematopoiesis.


Asunto(s)
Anemia de Diamond-Blackfan/genética , Exoma , Factor de Transcripción GATA1/genética , Secuencia de Bases , Estudios de Casos y Controles , Análisis Mutacional de ADN , Factor de Transcripción GATA1/metabolismo , Estudios de Asociación Genética , Hematopoyesis , Humanos , Masculino , Reacción en Cadena en Tiempo Real de la Polimerasa , Eliminación de Secuencia , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA