Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 360
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
J Environ Sci (China) ; 149: 46-56, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181658

RESUMEN

Phthalic acid esters (PAEs) are a group of compounds widespread in the environment. To investigate the occurrence and accumulation characteristics of PAEs, surface water samples were collected from the Three Gorges Reservoir area, China. The total concentrations of 11 analyzed PAEs (∑11PAEs) in the collected water samples ranging from 197.7 to 1,409.3 ng/L (mean ± IQR: 583.1 ± 308.4 ng/L). While DEHP was the most frequently detected PAE, DnBP and DnNP were the most predominant PAEs in the analyzed water samples with a mean contribution of 63.3% of the ∑11PAEs. The concentrations of the ∑11PAEs in the water samples from the upper reaches of the Yangtze River were significantly higher than those from the middle reaches. To better understand the transport and fate of the PAEs, seven detected PAEs were modeled by Quantitative Water Air Sediment Interaction (QWASI). The simulated and measured values were close for most PAEs, and differences are within one order of magnitude even for the worst one. For all simulated PAEs, water and particle inflow were main sources in the reservoir, whereas water outflow and degradation in water were important removal pathways. The contribution ratios of different sources/losses varied from PAEs, depending on their properties. The calculated risk quotients of DnNP in the Three Gorges Reservoir area whether based on monitoring or simulating results were all far exceeded the safety threshold value, implying the occurrence of this PAE compound may cause potential adverse effects for the aquatic ecology of the Three Gorges Reservoir area.


Asunto(s)
Monitoreo del Ambiente , Ésteres , Ácidos Ftálicos , Contaminantes Químicos del Agua , Ácidos Ftálicos/análisis , China , Contaminantes Químicos del Agua/análisis , Ésteres/análisis , Ríos/química , Modelos Químicos
2.
Curr Biol ; 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39353425

RESUMEN

Eukaryotic cells depend on dynamic changes in shape to fulfill a wide range of cellular functions, maintain essential biological processes, and regulate cellular behavior. The single-celled, predatory ciliate Lacrymaria exhibits extraordinary dynamic shape-shifting using a flexible "neck" that can stretch 7-8 times the length of its body to capture prey. The molecular mechanism behind this morphological change remains a mystery. We have observed that when in an active state, Lacrymaria repeatedly extends and contracts its neck to enable 360-degree space search and prey capture. This remarkable morphological change involves a unique actin-myosin system rather than the Ca2+-dependent system found in other contractile ciliates. Two cytoskeletons are identified in the cortex of the Lacrymaria cell, namely the myoneme cytoskeleton and the microtubule cytoskeleton. The myoneme cytoskeleton is composed of centrin-myosin proteins, exhibiting distinct patterns between the neck and body, with their boundary seemingly associated with the position of the macronucleus. A novel giant protein forming a ladder-like structure was discovered as a component of the microtubule cytoskeleton. Thick centrin-myosin fibers are situated very close to the right side of the ladders in the neck but are far away from such structures in the body. This arrangement enables the decoupling of the neck and body. Plasmodium-like unconventional actin has been discovered in Lacrymaria, and this may form highly dynamic short filaments that could attach to the giant protein and myosin, facilitating coordination between the two cytoskeletons in the neck. In summary, this fascinating organism employs unconventional cytoskeletal components to accomplish its extraordinary dynamic shape-shifting.

3.
Environ Int ; 193: 109072, 2024 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-39461170

RESUMEN

The complexity of environmental pollutants poses significant challenges for monitoring and analysis, especially with the emergence of numerous emerging contaminants. Traditional analysis methods rely mainly on laboratory analysis, which involves labor-intensive and time-consuming sample preparation procedures and non-target data analysis, greatly limiting the rapid detection of water organic pollutants. In this study, we designed a robot experimenter combined with GC × GC-TOFMS. By configuring self-developed automated analysis software, we established a fully automated process from sample collection to data characterization, for the analysis of organic pollutants. We validated the method with 111 organic standards compounds. The robot performed 2577 actions covering the entire workflow, from water sample collection to sample pre-treatment. The integration of mass spectrometry and related software enabled the automatic analysis of emerging hazardous contaminants, from sampling to the output of detection results. The results showed the automated process could qualitatively identify all compounds and demonstrated good linearity, low detection limits, and excellent quantitative ability within the range of 0.04-0.4 mg/L. The average recoveries of 82.89 % of the samples ranged from 70 % to 120 % (relative standard deviation (RSD) <15 %) at different spiked concentrations. This indicated that the established method could be used for non-targeted analysis of emerging contaminants in environmental water samples. We applied the method to samples from wastewater treatment plants and river sections, identifying 1,902 compounds across 26 categories, including 6 known hazardous contaminants found in all samples. The relative content of these characteristic compounds will inform whether treated wastewater meets discharge standards and aid in tracing the sources of pollutants. Therefore, the development of this fully automated machine experimental method enables real-time and online automatic analysis of organic pollutants in environmental water. The establishment of characteristic fingerprints can provide technical support for early warning and traceability of water quality.

4.
J Hazard Mater ; 480: 136130, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39405718

RESUMEN

Wastewater acts as a significant sink and source of per- and polyfluoroalkyl substances (PFAS). This study investigated the occurrence, removal and mass flow of 48 emerging and legacy PFAS in 8 domestic and general industrial wastewater treatment plants (WWTPs) throughout entire treatment processes. In wastewater and sludge, 24 and 26 PFAS were detected, with concentrations of 246-27,100 ng/L and 91.6-214 ng/g, respectively. Predominant substances included 2H,2H-perfluorooctanoic acid (6:2 FTCA), 2H,2H-perfluorododecanoic acid (10:2 FTCA), and perfluorooctanoic acid (PFOA). Novel alternatives such as hexafluoropropylene oxide dimer acid (GenX) were not detected. Removal efficiency of total PFAS was 1-46 % in domestic WWTPs but negative in industrial WWTPs, with one industrial WWTP showing a 27-fold increase due to 6:2 FTCA generation. Median removal efficiency revealed that 9 out of 13 major PFAS decreased after treatment, while 4 increased. PFAS with -CH2- group showed weaker sludge sorption compared to those with perfluorinated carbon chains. Mass flow analysis revealed wastewater is the major fate rather than sludge for emerging PFAS. Increased mass flows of fluorotelomer carboxylic acids (FTCAs) and perfluorobutanesulfonic acid (PFBS) were observed at biochemical treatment and disinfection. The ecological risk assessment using a relative risk ranking model identified higher risks from PFBS, polyfluoroalkyl phosphate mono-esters, and FTCAs. Emerging PFAS pose challenges in removal and greater hazards to ecosystems, necessitating careful evaluation and restriction to address their risk.

5.
Anesth Analg ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39259695

RESUMEN

BACKGROUND: Patients with craniofacial cancer frequently suffer from severe pain. The traditional intrathecal, oral, or intravenous analgesics could only provide insufficient pain relief with many side effects. Thus, a more effective analgesia approach is required. This study aimed to investigate the safety and efficacy of placing the catheter of an intrathecal morphine pump in the prepontine cistern for the treatment of craniofacial cancer pain. METHODS: We performed a retrospective study of patients with primary or metastatic craniofacial cancer pain who received the catheter placement of an intrathecal morphine pump into the prepontine cistern in eleven medical centers from September 2019 to December 2023. Friedman test and pairwise signed-rank test were used to evaluate the difference in numeric rating scale (NRS) scores, the number of breakthrough pain episodes, dose of intrathecal morphine, and dose of systemic morphine equivalents (oral, patch, intravenous) from preoperative period to postoperative days 1, 7, and 30. P values were corrected for multiple comparisons using Bonferroni test. RESULTS: The study included 33 patients. The median (interquartile range [IQR]) of NRS scores at days 1, 7, and 30 postimplant were 2.0 (1.0-3.5), 2.0 (1.0-2.0), and 1.0 (1.0-2.0), respectively, which was significantly lower than that before surgery (median, 8.0; IQR, 7.0-10.0; all P < .001). Compared to baseline number/d of breakthrough pain episodes (median, 6.0; IQR, 4.5-10.0), there was a progressive decrease in the number/d of breakthrough pain episodes at day 1, day 7, and day 30 postimplant, and the median (IQR) were 1.0 (0.0-3.0), 2.0 (0.0-3.0), and 0.0 (0.0-1.2), respectively (all P < .001). Approximately 78.8% and 96.7% of patients reported pain relief >50% at days 1 and 30 postimplant, respectively. Compared with that at day 1 postimplant, the proportion of patients with a pain relief rate >75% at day 30 postimplant also increased with continued intrathecal treatment. Compared to the dose of baseline systemic morphine equivalents (median, 228 mg.d-1; IQR, 120-408 mg.d-1), the dose of systemic morphine equivalents reduced significantly from 0(0-120) mg.d-1 at day 1 postimplant (P = .001), to 0 (0-0) mg.d-1 at days 7 and 30 postimplant (both P < .001). Few patients reported perioperative adverse events, including nausea, constipation, hypotension, urinary retention, dry mouth, headache, and sedation. No severe adverse events occurred. CONCLUSIONS: Placing the catheter tip of an intrathecal morphine pump into the prepontine cistern could effectively relieve refractory craniofacial cancer pain with an extremely low total morphine dose requirement and few adverse events. This procedure could be considered in patients with severe refractory craniofacial cancer pain.

6.
ACS Nano ; 18(40): 27537-27546, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39331796

RESUMEN

Post-transcriptional modification of N6-methyladenosine (m6A) is crucial for ribonucleic acid (RNA) metabolism and cellular function. The ability to visualize site-specific m6A methylation at the single-cell level would markedly enhance our understanding of its pivotal regulatory functions in the field of epitranscriptomics. Despite this, current in situ imaging techniques for site-specific m6A are constrained, posing a significant barrier to epitranscriptomic studies and pathological diagnostics. Capitalizing on the precise targeting capability of deoxyribonucleic acid (DNA) hybridization and the high specificity of the m6A antibody, we present a method, termed proximity hybridization followed by primer exchange amplification (m6A-PHPEA), for the site-specific imaging of m6A methylation within cells. This approach enables high-resolution, single-cell imaging of m6A methylation across various RNA molecules coupled with efficient signal amplification. We successfully imaged three distinct m6A methylation sites concurrently in multiple cell types, revealing cell-to-cell variability in expression levels. This method promises to illuminate the dynamics of m6A-modified RNAs, potentially revolutionizing epitranscriptomic research and the development of advanced pathological diagnosis for chemical modifications.


Asunto(s)
Adenosina , Humanos , Adenosina/química , Adenosina/análogos & derivados , Metilación , Hibridación de Ácido Nucleico , ARN/química , ARN/genética , Técnicas de Amplificación de Ácido Nucleico/métodos , Análisis de la Célula Individual , ADN/química , ADN/genética
7.
Sci Total Environ ; 950: 175316, 2024 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-39117193

RESUMEN

2,4,6-Trichloroanisole (2,4,6-TCA), a compound with a characteristic earthy odor, is a common source of odorous pollutants in drinking water and wine. However, research on its biological toxicity is limited. In this study, we used zebrafish as an indicator model to investigate the effects of 2,4,6-TCA exposure on morphological development, oxidative stress, apoptosis, heart rate, blood flow, and motility. We found that exposure to 2,4,6-TCA resulted in significant spinal, tail, and cardiac deformities in zebrafish larvae and promoted a pronounced oxidative stress response and extensive cell apoptosis, notably in the digestive tract, head, spine, and heart, ultimately leading to significant reductions in zebrafish heart rate, blood flow, and motility. Moreover, these effects became more pronounced with an increase in the concentration of 2,4,6-TCA to which the zebrafish were exposed. Furthermore, qPCR analysis revealed that exposure to 2,4,6-TCA promoted significant changes in the expression levels of genes associated with oxidative stress, apoptosis, cardiac development, and the nervous system, particularly key genes (p53, apaf1, casp9, and casp3) in the mitochondrial apoptotic pathway, which were significantly upregulated. Similarly, we detected significant upregulation of ache gene expression. These findings indicated that exposure to 2,4,6-TCA resulted in the accumulation of reactive oxygen species in zebrafish, induced strong oxidative stress responses, and triggered lipid peroxidation and extensive cell apoptosis. Cellular apoptosis, which mitochondrial signaling pathways may mediate, has been found to lead to malformations in zebrafish embryos, resulting in significant reductions in cardiac function and motility. To our knowledge, this is the first systematic assessment of the toxicity of 2,4,6-TCA, and our findings provide an important reference for risk assessment and early warning of 2,4,6-TCA exposure.


Asunto(s)
Anisoles , Estrés Oxidativo , Contaminantes Químicos del Agua , Pez Cebra , Animales , Estrés Oxidativo/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Anisoles/toxicidad , Apoptosis/efectos de los fármacos , Embrión no Mamífero/efectos de los fármacos
8.
Rev Cardiovasc Med ; 25(2): 56, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39077334

RESUMEN

Myokines are a group of cytokines or polypeptides released from skeletal muscle during exercise. Growing evidence suggests that myokines are associated with the development of cardiovascular disease (CVD). Moreover, several myokines in peripheral blood exhibit dynamic changes in different CVD stages. This review summarizes the potential roles of myokines such as myostatin, irisin, brain-derived neurotrophic factor, mitsugumin 53, meteorin-like, and apelin in various CVD, including myocardial infarction, heart failure, atherosclerosis, hypertension, and diabetes. The association of these myokines with biomarkers currently being used in clinical practice is also discussed. Furthermore, the review considers the emerging role of myokines in CVD and addresses the challenges remaining in translating these discoveries into novel clinical biomarkers for CVD.

9.
J Proteome Res ; 23(8): 3659-3673, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39022804

RESUMEN

MicroRNAs are short, noncoding RNA molecules that exert pivotal roles in cancer development and progression by modulating various target genes. There is growing evidence that miR-138-5p is significantly involved in cervical cancer (CC). However, its precise molecular mechanism has yet to be fully understood. In the current investigation, a quantitative proteomics approach was utilized to detect possible miR-138-5p targets in HeLa cells systematically. In total, 364 proteins were downregulated, and 150 were upregulated after miR-138-5p overexpression. Bioinformatic analysis of these differentially expressed proteins (DEPs) revealed significant enrichment in several cancer-related pathways. Zinc finger protein 385A (ZNF385A) was determined as a novel direct target of miR-138-5p and discovered to facilitate the proliferation, migration, and cell cycle progression of HeLa cells. SFN and Fas cell surface death receptor(FAS) were then identified as functional downstream effectors of ZNF385A and miR-138-5p. Moreover, a tumor xenograft experiment was conducted to validate the association of miR-138-5p-ZNF385A-SFN/FAS axis with the development of CC in vivo. Our findings have collectively established a catalog of proteins mediated by miR-138-5p and have provided an in-depth comprehension of the molecular mechanisms responsible for the inhibitory effect of miR-138-5p on CC. The miR-138-5p-ZNF385A-SFN/FAS axis could also be beneficial to the identification of new therapeutic targets.


Asunto(s)
Proliferación Celular , Regulación Neoplásica de la Expresión Génica , MicroARNs , Proteómica , Neoplasias del Cuello Uterino , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología , Femenino , Células HeLa , Proteómica/métodos , Proliferación Celular/genética , Animales , Movimiento Celular/genética , Ratones
10.
BMC Pharmacol Toxicol ; 25(1): 41, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38997770

RESUMEN

BACKGROUND AND AIM: The use of cefoperazone/sulbactam (CPZ/SAM) could commonly cause vitamin K-dependent coagulation disorders and even hemorrhage sometimes. However, there is a lack of prediction tools estimating the risk for this. This study aimed at developing and internally validating a model for predicting CPZ/SAM-associated coagulation disorders in Chinese inpatients. METHODS: A case-control study was conducted in 11,092 adult inpatients admitted to a Chinese general hospital between 2020 and 2021 and treated with CPZ/SAM. Patients with CPZ/SAM-associated coagulation disorders were identified through the Adverse Drug Events Active Surveillance and Assessment System-II and subsequent manual evaluation. Controls were selected from eligible patients who didn't develop coagulation disorders after CPZ/SAM therapy, with a 1:1 propensity score matching. The final predictors were obtained by univariable and multivariable logistic regression analyses. Internal validation and calibration for the model were performed using 1000 bootstrap resamplings. RESULTS: 258 patients were identified as CPZ/SAM-associated coagulation disorders in 2184 patients eligible for inclusions and exclusions and the incidence was 11.8%. A final population of 252 cases and 252 controls was included for model development and validation. Malnutrition (OR = 2.41 (1.56-3.77)), history of recent bleeding (OR = 1.95 (1.32-2.90)), treatment duration (OR = 1.10 (1.07-1.14)), combination with carbapenems (OR = 4.43 (1.85-11.88)), and serum creatinine (OR = 1.01 (1.00-1.01)) were identified as final predictors. The model showed good discrimination, calibration, and clinical practicality, with the validated area under the receiver operating characteristic curve being 0.723 (0.683-0.770). CONCLUSIONS: The model with good performance quantifies the risk for CPZ/SAM-associated coagulation disorders, and may support individual assessment and interventions to mitigate the risk after external validation.


Asunto(s)
Antibacterianos , Trastornos de la Coagulación Sanguínea , Cefoperazona , Sulbactam , Humanos , Cefoperazona/uso terapéutico , Cefoperazona/efectos adversos , Sulbactam/uso terapéutico , Sulbactam/efectos adversos , Femenino , Masculino , Persona de Mediana Edad , Estudios de Casos y Controles , Anciano , Antibacterianos/efectos adversos , Antibacterianos/uso terapéutico , China , Trastornos de la Coagulación Sanguínea/inducido químicamente , Adulto , Pacientes Internos , Pueblos del Este de Asia
11.
Orthop Surg ; 16(8): 2030-2039, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38951721

RESUMEN

OBJECTIVE: As osteoporosis progresses, the primary compressive trabeculae (PCT) in the proximal femur remains preserved and is deemed the principal load-bearing structure that links the femoral head with the femoral neck. This study aims to elucidate the distribution patterns of PCT within the proximal femur in the elderly population, and to assess its implications for the development and optimization of internal fixation devices used in hip fracture surgeries. METHODS: This is a retrospective cohort study conducted from March 2022 to April 2023. A total of 125 patients who underwent bilateral hip joint CT scans in our hospital were enrolled. CT data of the unaffected side of the hip were analyzed. Key parameters regarding the PCT distribution in the proximal femur were measured, including the femoral head's radius (R), the neck-shaft angle (NSA), the angle between the PCT-axis and the head-neck axis (α), the distance from the femoral head center to the PCT-axis (δ), and the lengths of the PCT's bottom and top boundaries (L-bottom and L-top respectively). The impact of gender differences on PCT distribution patterns was also investigated. Student's t-test or Mann-Whitney U test were used to compare continuous variables between genders. The relationship between various variables was investigated through Pearson's correlation analysis. RESULTS: PCT was the most prominent bone structure within the femoral head. The average NSA, α, and δ were 126.85 ± 5.85°, 37.33 ± 4.23°, and 0.39 ± 1.22 mm, respectively, showing no significant gender differences (p > 0.05). Pearson's correlation analysis revealed strong correlations between α and NSA (r = -0.689, p < 0.001), and R and L-top (r = 0.623, p < 0.001), with mild correlations observed between δ and NSA (r = -0.487, p < 0.001), and R and L-bottom (r = 0.427, p < 0.001). Importantly, our study establishes a method to accurately localize PCT distribution in true anteroposterior (AP) radiographs of the hip joint, facilitating precise screw placement in proximal femur fixation procedures. CONCLUSION: Our study provided unprecedented insights into the distribution patterns of PCT in the proximal femur of the elderly population. The distribution of PCT in the proximal femur is predominantly influenced by anatomical and geometric factors, such as NSA and femoral head size, rather than demographic factors like gender. These insights have crucial implications for the design of internal fixation devices and surgical planning, offering objective guidance for the placement of screws in hip fracture treatments.


Asunto(s)
Tomografía Computarizada por Rayos X , Humanos , Femenino , Masculino , Estudios Retrospectivos , Anciano , Anciano de 80 o más Años , Fémur/diagnóstico por imagen , Cabeza Femoral/diagnóstico por imagen , Hueso Esponjoso/diagnóstico por imagen , Persona de Mediana Edad , Cuello Femoral/diagnóstico por imagen
12.
Fundam Res ; 4(3): 563-569, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38933215

RESUMEN

Individuals tend to move freely when there is enough room but would act collectively for their survival under external stress. In the case of living cells, for instance, when a drop of low-density flagellated bacterial solution is transferred onto the agar surface, the initially disordered movement of individual bacteria would be replaced with coordinated cell swarming after a lag phase of a few hours. Here, we study how such cooperation is established while overcoming the disorder at the onset of the lag phase with single nanoparticle tracking. Upon the spreading of the droplet, the bacteria in the solution cluster and align near the almost immobilized contact line confining the drop, forming a narrow ring of cells. As individual cells move in and out of the ring continuously, certain flow patterns emerge in the inter-bacterial fluid. We reveal high-speed long-distance unidirectional flows with definite chirality along the outside of the ring, along the inside of the ring and across the ring. We speculate that these flows enable the fast and efficient transport, facilitating the communication and unification of the bacterial community.

13.
J Plant Physiol ; 299: 154276, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38801806

RESUMEN

Ginsenoside F1 has high medicinal values, which is a kind of rare triterpene saponin isolated from Panax plants. The extremely low content of ginsenoside F1 in herbs has limited its research and application in medical field. In this work, we constructed a pathway in tobacco for the biosynthesis of ginsenoside F1 by metabolic engineering. Four enzyme genes (PnDDS, CYP716A47, CYP716S1 and UGT71A56) isolated from Panax notoginseng were introduced into tobacco. Thus, a biosynthetic pathway for ginsenoside F1 synthesis was artificially constructed in tobacco cells; moreover, the four exogenous genes could be expressed in the roots, stems and leaves of transgenic plants. Consequently, ginsenoside F1 and its precursors were successfully synthesized in the transgenic tobacco, compared with Panax plants, the content of ginsenoside F1 in transgenic tobacco was doubled. In addition, accumulation of ginsenoside F1 and its precursors in transgenic tobacco shows organ specificity. Based on these results, a new approach was established to produce rare ginsenoside F1; meanwhile, such strategy could also be employed in plant hosts for the heterologous synthesis of other important or rare natural products.


Asunto(s)
Ginsenósidos , Nicotiana , Plantas Modificadas Genéticamente , Ginsenósidos/biosíntesis , Ginsenósidos/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Plantas Modificadas Genéticamente/genética , Ingeniería Metabólica/métodos , Vías Biosintéticas/genética
14.
ACS Sens ; 9(6): 2897-2906, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38776471

RESUMEN

Ovarian cancer (OC) has the highest mortality rate among malignant tumors, primarily because it is difficult to diagnose early. Exosomes, a type of extracellular vesicle rich in parental information, have garnered significant attention in the field of cancer diagnosis and treatment. They play an important regulatory role in the occurrence, development, and metastasis of OC. Consequently, exosomes have emerged as noninvasive biomarkers for early cancer detection. Therefore, identifying cancer-derived exosomes may offer a novel biomarker for the early detection of OC. In this study, we developed a metal-organic frameworks assembled "double hook"-type aptamer electrochemical sensor, which enables accurate early diagnosis of OC. Under optimal experimental conditions, electrochemical impedance spectroscopy technology demonstrated a good linear relationship within the concentration range of 31-3.1 × 106 particles per microliter, with a detection limit as low as 12 particles per microliter. The universal exosome detection platform is constructed, and this platform can not only differentiate between high-grade serous ovarian cancer (HGSOC) patients and healthy individuals but also distinguish between HGSOC patients and nonhigh-grade serous OC (non-HGSOC). Consequently, it provides a novel strategy for the early diagnosis of OC and holds great significance in clinical differential diagnosis.


Asunto(s)
Detección Precoz del Cáncer , Neoplasias Ováricas , Femenino , Neoplasias Ováricas/diagnóstico , Humanos , Detección Precoz del Cáncer/métodos , Técnicas Electroquímicas/métodos , Técnicas Biosensibles/métodos , Aptámeros de Nucleótidos/química , Estructuras Metalorgánicas/química , Exosomas/química , Límite de Detección , Espectroscopía Dieléctrica/métodos , Biomarcadores de Tumor/análisis
15.
Bull Environ Contam Toxicol ; 112(5): 75, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38733395

RESUMEN

This study systematically investigated the pollution levels and migration trends of PBDEs in soils and plants around engineering plastics factory, and identified the ecological risks of PBDEs in the environment around typical pollution sources.The results showed that 13 kinds of PBDEs were widely detected in the surrounding areas, and the concentration level was higher than the general environmental pollution level. The total PBDE concentrations (∑13PBDEs) in soils ranged from 14.6 to 278.4 ng/g dry weight (dw), and in plants ranged from 11.5 to 176 ng/g dw. Both soil and plant samples showed that BDE-209 was the most important congener, the pollution level in soil and plant was similar, and the composition of PBDEs congener was similar. In the soil column (50 cm), the radial migration of PBDEs was mainly concentrated in the 0-30 cm section. Except for BDE-66, which was mainly located in the 20-30 cm soil layer, the concentration of PBDEs was the highest in the 0-10 cm region. Furthermore, the environmental risks of PBDEs in soil and plants were evaluated by hazard quotient method, and the HQ values were all < 1, which did not exhibit any ecological risk. The evaluation results also showed that the ecological risk of PBDEs in soil was higher than that of plants, especially penta-BDE, which should be paid more attention.


Asunto(s)
Monitoreo del Ambiente , Éteres Difenilos Halogenados , Plásticos , Contaminantes del Suelo , Suelo , Éteres Difenilos Halogenados/análisis , Contaminantes del Suelo/análisis , Medición de Riesgo , Suelo/química , Plásticos/análisis , Plantas , China
16.
Biosens Bioelectron ; 257: 116313, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38688229

RESUMEN

The emergence and rapid spread of Mpox (formerly monkeypox) have caused significant societal challenges. Adequate and appropriate diagnostics procedures are an urgent necessity. Herein, we discover a pair of aptamers through the systematic evolution of ligands by exponential enrichment (SELEX) that exhibit high affinity and bind to different sites towards the A29 protein of the Mpox virus. Subsequently, we propose a facile, sensitive, convenient CRISPR/Cas12a-mediated aptasensor for detecting the A29 antigen. The procedure employs the bivalent aptamers recognition, which induces the formation of a proximity switch probe and initiates subsequent cascade strand displacement reactions, then triggers CRISPR/Cas12a DNA trans-cleavage to achieve the sensitive detection of Mpox. Our method enables selective and ultrasensitive evaluation of the A29 protein within the range of 1 ng mL-1 to 1 µg mL-1, with a limit of detection (LOD) at 0.28 ng mL-1. Moreover, spiked A29 protein recovery exceeds 96.9%, while the detection activity remains above 91.9% after six months of storage at 4 °C. This aptasensor provides a novel avenue for exploring clinical diagnosis in cases involving Mpox as facilitating development in various analyte sensors.


Asunto(s)
Antígenos Virales , Aptámeros de Nucleótidos , Técnicas Biosensibles , Monkeypox virus , Humanos , Antígenos Virales/análisis , Aptámeros de Nucleótidos/química , Proteínas Bacterianas , Técnicas Biosensibles/métodos , Proteínas Asociadas a CRISPR/química , Sistemas CRISPR-Cas , Endodesoxirribonucleasas , Límite de Detección , Técnica SELEX de Producción de Aptámeros
17.
J Proteome Res ; 23(5): 1689-1701, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38565891

RESUMEN

Cyanobacteria are the oldest prokaryotic photoautotrophic microorganisms and have evolved complicated post-translational modification (PTM) machinery to respond to environmental stress. Lysine 2-hydroxyisobutyrylation (Khib) is a newly identified PTM that is reported to play important roles in diverse biological processes, however, its distribution and function in cyanobacteria have not been reported. Here, we performed the first systematic studies of Khib in a model cyanobacterium Synechococcus sp. strain PCC 7002 (Syn7002) using peptide prefractionation, pan-Khib antibody enrichment, and high-accuracy mass spectrometry (MS) analysis. A total of 1875 high-confidence Khib sites on 618 proteins were identified, and a large proportion of Khib sites are present on proteins in the cellular metabolism, protein synthesis, and photosynthesis pathways. Using site-directed mutagenesis and functional studies, we showed that Khib of glutaredoxin (Grx) affects the efficiency of the PS II reaction center and H2O2 resistance in Syn7002. Together, this study provides novel insights into the functions of Khib in cyanobacteria and suggests that reversible Khib may influence the stress response and photosynthesis in both cyanobacteria and plants.


Asunto(s)
Lisina , Procesamiento Proteico-Postraduccional , Synechococcus , Lisina/metabolismo , Synechococcus/metabolismo , Synechococcus/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Peróxido de Hidrógeno/metabolismo , Glutarredoxinas/metabolismo , Glutarredoxinas/genética , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema II/genética , Mutagénesis Sitio-Dirigida , Fotosíntesis , Cianobacterias/metabolismo , Cianobacterias/genética , Espectrometría de Masas
18.
J Proteome Res ; 23(4): 1174-1187, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38427982

RESUMEN

Protein homeostasis is essential for cyanobacteria to maintain proper cellular function under adverse and fluctuating conditions. The AAA+ superfamily of proteolytic complexes in cyanobacteria plays a critical role in this process, including ClpXP, which comprises a hexameric ATPase ClpX and a tetradecameric peptidase ClpP. Despite the physiological effects of ClpX on growth and photosynthesis, its potential substrates and underlying mechanisms in cyanobacteria remain unknown. In this study, we employed a streptavidin-biotin affinity pull-down assay coupled with label-free proteome quantitation to analyze the interactome of ClpX in the model cyanobacterium Synechocystis sp. PCC 6803 (hereafter Synechocystis). We identified 503 proteins as potential ClpX-binding targets, many of which had novel interactions. These ClpX-binding targets were found to be involved in various biological processes, with particular enrichment in metabolic processes and photosynthesis. Using protein-protein docking, GST pull-down, and biolayer interferometry assays, we confirmed the direct association of ClpX with the photosynthetic proteins, ferredoxin-NADP+ oxidoreductase (FNR) and phycocyanin subunit (CpcA). Subsequent functional investigations revealed that ClpX participates in the maintenance of FNR homeostasis and functionality in Synechocystis grown under different light conditions. Overall, our study provides a comprehensive understanding of the extensive functions regulated by ClpX in cyanobacteria to maintain protein homeostasis and adapt to environmental challenges.


Asunto(s)
Fotosíntesis , Synechocystis , Fotosíntesis/genética , Synechocystis/genética , Synechocystis/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Ficocianina/metabolismo
19.
Front Pharmacol ; 15: 1293468, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38362153

RESUMEN

Introduction: Despite the clinical value of Chinese herbal medicine (CHM), restricted comprehension of its toxicity limits the secure and efficacious application. Previous studies primarily focused on exploring specific toxicities within CHM, without providing an overview of CHM's toxicity. The absence of a quantitative assessment of focal points renders the future research trajectory ambiguous. Therefore, this study aimed to reveal research trends and areas of concern for the past decade. Methods: A cross-sectional study was conducted on publications related to CHM and toxicity over the past decade from Web of Science Core Collection database. The characteristics of the publication included publication year, journal, institution, funding, keywords, and citation counts were recorded. Co-occurrence analysis and trend topic analysis based on bibliometric analysis were conducted on keywords and citations. Results: A total of 3,225 publications were analyzed. Number of annal publications increased over the years, with the highest number observed in 2022 (n = 475). The Journal of Ethnopharmacology published the most publications (n = 425). The most frequently used toxicity classifications in keywords were hepatotoxicity (n = 119) or drug-induced liver injury (n = 48), and nephrotoxicity (n = 40). Co-occurrence analysis revealed relatively loose connections between CHM and toxicity, and their derivatives. Keywords emerging from trend topic analysis for the past 3 years (2019-2022) included ferroptosis, NLRP3 inflammasome, machine learning, network pharmacology, traditional uses, and pharmacology. Conclusion: Concerns about the toxicity of CHM have increased in the past decade. However, there remains insufficient studies that directly explore the intersection of CHM and toxicity. Hepatotoxicity and nephrotoxicity, as the most concerned toxicity classifications associated with CHM, warrant more in-depth investigations. Apoptosis was the most concerned toxicological mechanism. As a recent increase in attention, exploring the mechanisms of ferroptosis in nephrotoxicity and NLRP3 inflammasome in hepatotoxicity could provide valuable insights. Machine learning and network pharmacology are potential methods for future studies.

20.
Plant Physiol ; 194(2): 634-661, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-37770070

RESUMEN

Lysine acetylation is a conserved regulatory posttranslational protein modification that is performed by lysine acetyltransferases (KATs). By catalyzing the transfer of acetyl groups to substrate proteins, KATs play critical regulatory roles in all domains of life; however, no KATs have yet been identified in cyanobacteria. Here, we tested all predicted KATs in the cyanobacterium Synechococcus sp. PCC 7002 (Syn7002) and demonstrated that A1596, which we named cyanobacterial Gcn5-related N-acetyltransferase (cGNAT2), can catalyze lysine acetylation in vivo and in vitro. Eight amino acid residues were identified as the key residues in the putative active site of cGNAT2, as indicated by structural simulation and site-directed mutagenesis. The loss of cGNAT2 altered both growth and photosynthetic electron transport in Syn7002. In addition, quantitative analysis of the lysine acetylome identified 548 endogenous substrates of cGNAT2 in Syn7002. We further demonstrated that cGNAT2 can acetylate NAD(P)H dehydrogenase J (NdhJ) in vivo and in vitro, with the inability to acetylate K89 residues, thus decreasing NdhJ activity and affecting both growth and electron transport in Syn7002. In summary, this study identified a KAT in cyanobacteria and revealed that cGNAT2 regulates growth and photosynthesis in Syn7002 through an acetylation-mediated mechanism.


Asunto(s)
Lisina Acetiltransferasas , Synechococcus , Lisina Acetiltransferasas/genética , Lisina Acetiltransferasas/metabolismo , Lisina/metabolismo , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Synechococcus/genética , Synechococcus/metabolismo , Acetilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA