Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Protein Cell ; 14(1): 37-50, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36726760

RESUMEN

The twenty-first century has already recorded more than ten major epidemics or pandemics of viral disease, including the devastating COVID-19. Novel effective antivirals with broad-spectrum coverage are urgently needed. Herein, we reported a novel broad-spectrum antiviral compound PAC5. Oral administration of PAC5 eliminated HBV cccDNA and reduced the large antigen load in distinct mouse models of HBV infection. Strikingly, oral administration of PAC5 in a hamster model of SARS-CoV-2 omicron (BA.1) infection significantly decreases viral loads and attenuates lung inflammation. Mechanistically, PAC5 binds to a pocket near Asp49 in the RNA recognition motif of hnRNPA2B1. PAC5-bound hnRNPA2B1 is extensively activated and translocated to the cytoplasm where it initiates the TBK1-IRF3 pathway, leading to the production of type I IFNs with antiviral activity. Our results indicate that PAC5 is a novel small-molecule agonist of hnRNPA2B1, which may have a role in dealing with emerging infectious diseases now and in the future.


Asunto(s)
Antivirales , Virus de la Hepatitis B , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B , SARS-CoV-2 , Animales , Ratones , Antivirales/farmacología , COVID-19 , Interferón Tipo I/metabolismo , SARS-CoV-2/efectos de los fármacos , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/antagonistas & inhibidores
2.
Front Cell Dev Biol ; 8: 590008, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33224952

RESUMEN

Stroke may cause severe death and disability but many clinical trials have failed in the past, partially because the lack of an effective method to regenerate new neurons after stroke. In this study, we report an in vivo neural regeneration approach through AAV NeuroD1-based gene therapy to repair damaged brains after ischemic stroke in adult non-human primates (NHPs). We demonstrate that ectopic expression of a neural transcription factor NeuroD1 in the reactive astrocytes after monkey cortical stroke can convert 90% of the infected astrocytes into neurons. Interestingly, astrocytes are not depleted in the NeuroD1-converted areas, consistent with the proliferative capability of astrocytes. Following ischemic stroke in monkey cortex, the NeuroD1-mediated astrocyte-to-neuron (AtN) conversion significantly increased local neuronal density, reduced microglia and macrophage, and surprisingly protected parvalbumin interneurons in the converted areas. Furthermore, the NeuroD1 gene therapy showed a broad time window in AtN conversion, from 10 to 30 days following ischemic stroke. The cortical astrocyte-converted neurons showed Tbr1+ cortical neuron identity, similar to our earlier findings in rodent animal models. Unexpectedly, NeuroD1 expression in converted neurons showed a significant decrease after 6 months of viral infection, indicating a downregulation of NeuroD1 after neuronal maturation in adult NHPs. These results suggest that in vivo cell conversion through NeuroD1-based gene therapy may be an effective approach to regenerate new neurons for tissue repair in adult primate brains.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA