Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Sci Rep ; 13(1): 18788, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37914762

RESUMEN

A fast and reliable range monitoring method is required to take full advantage of the high linear energy transfer provided by therapeutic ion beams like carbon and oxygen while minimizing damage to healthy tissue due to range uncertainties. Quasi-real-time range monitoring using in-beam positron emission tomography (PET) with therapeutic beams of positron-emitters of carbon and oxygen is a promising approach. The number of implanted ions and the time required for an unambiguous range verification are decisive factors for choosing a candidate isotope. An experimental study was performed at the FRS fragment-separator of GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany, to investigate the evolution of positron annihilation activity profiles during the implantation of [Formula: see text]O and [Formula: see text]O ion beams in a PMMA phantom. The positron activity profile was imaged by a dual-panel version of a Siemens Biograph mCT PET scanner. Results from a similar experiment using ion beams of carbon positron-emitters [Formula: see text]C and [Formula: see text]C performed at the same experimental setup were used for comparison. Owing to their shorter half-lives, the number of implanted ions required for a precise positron annihilation activity peak determination is lower for [Formula: see text]C compared to [Formula: see text]C and likewise for [Formula: see text]O compared to [Formula: see text]O, but their lower production cross-sections make it difficult to produce them at therapeutically relevant intensities. With a similar production cross-section and a 10 times shorter half-life than [Formula: see text]C, [Formula: see text]O provides a faster conclusive positron annihilation activity peak position determination for a lower number of implanted ions compared to [Formula: see text]C. A figure of merit formulation was developed for the quantitative comparison of therapy-relevant positron-emitting beams in the context of quasi-real-time beam monitoring. In conclusion, this study demonstrates that among the positron emitters of carbon and oxygen, [Formula: see text]O is the most feasible candidate for quasi-real-time range monitoring by in-beam PET that can be produced at therapeutically relevant intensities. Additionally, this study demonstrated that the in-flight production and separation method can produce beams of therapeutic quality, in terms of purity, energy, and energy spread.

2.
Nucl Instrum Methods Phys Res B ; 541: 114-116, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37265512

RESUMEN

The FRagment Separator FRS at GSI is a versatile spectrometer and separator for experiments with relativistic in-flight separated short-lived exotic beams. One branch of the FRS is connected to the target hall where the bio-medical cave (Cave M) is located. Recently a joint activity between the experimental groups of the FRS and the biophysics at the GSI and Department of physics at LMU was started to perform biomedical experiments relevant for hadron therapy with positron emitting carbon and oxygen beams. This paper presents the new ion-optical mode and commissioning results of the FRS-Cave M branch where positron emitting 15O-ions were provided to the medical cave for the first time. An overall conversion efficiency of 2.9±0.2×10-4 15O fragments per primary 16O ion accelerated in the synchrotron SIS18 was reached.

3.
Phys Rev Lett ; 129(21): 212502, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36461972

RESUMEN

The new isotope ^{39}Na, the most neutron-rich sodium nucleus observed so far, was discovered at the RIKEN Nishina Center Radioactive Isotope Beam Factory using the projectile fragmentation of an intense ^{48}Ca beam at 345 MeV/nucleon on a beryllium target. Projectile fragments were separated and identified in flight with the large-acceptance two-stage separator BigRIPS. Nine ^{39}Na events have been unambiguously observed in this work and clearly establish the particle stability of ^{39}Na. Furthermore, the lack of observation of ^{35,36}Ne isotopes in this experiment significantly improves the overall confidence that ^{34}Ne is the neutron dripline nucleus of neon. These results provide new key information to understand nuclear binding and nuclear structure under extremely neutron-rich conditions. The newly established stability of ^{39}Na has a significant impact on nuclear models and theories predicting the neutron dripline and also provides a key to understanding the nuclear shell property of ^{39}Na at the neutron number N=28, which is normally a magic number.

4.
Phys Med Biol ; 68(1)2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-36533621

RESUMEN

Objective. Beams of stable ions have been a well-established tool for radiotherapy for many decades. In the case of ion beam therapy with stable12C ions, the positron emitters10,11C are produced via projectile and target fragmentation, and their decays enable visualization of the beam via positron emission tomography (PET). However, the PET activity peak matches the Bragg peak only roughly and PET counting statistics is low. These issues can be mitigated by using a short-lived positron emitter as a therapeutic beam.Approach.An experiment studying the precision of the measurement of ranges of positron-emitting carbon isotopes by means of PET has been performed at the FRS fragment-separator facility of GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany. The PET scanner used in the experiment is a dual-panel version of a Siemens Biograph mCT PET scanner.Main results.High-quality in-beam PET images and activity distributions have been measured from the in-flight produced positron emitting isotopes11C and10C implanted into homogeneous PMMA phantoms. Taking advantage of the high statistics obtained in this experiment, we investigated the time evolution of the uncertainty of the range determined by means of PET during the course of irradiation, and show that the uncertainty improves with the inverse square root of the number of PET counts. The uncertainty is thus fully determined by the PET counting statistics. During the delivery of 1.6 × 107ions in 4 spills for a total duration of 19.2 s, the PET activity range uncertainty for10C,11C and12C is 0.04 mm, 0.7 mm and 1.3 mm, respectively. The gain in precision related to the PET counting statistics is thus much larger when going from11C to10C than when going from12C to11C. The much better precision for10C is due to its much shorter half-life, which, contrary to the case of11C, also enables to include the in-spill data in the image formation.Significance. Our results can be used to estimate the contribution from PET counting statistics to the precision of range determination in a particular carbon therapy situation, taking into account the irradiation scenario, the required dose and the PET scanner characteristics.


Asunto(s)
Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones/métodos , Fantasmas de Imagen , Semivida , Alemania
5.
Phys Rev Lett ; 129(14): 142502, 2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36240396

RESUMEN

The root mean square radii of the proton density distribution in ^{16-24}O derived from measurements of charge changing cross sections with a carbon target at ∼900A MeV together with the matter radii portray thick neutron skin for ^{22-24}O despite ^{22,24}O being doubly magic. Imprints of the shell closures at N=14 and 16 are reflected in local minima of their proton radii that provide evidence for the tensor interaction causing them. The radii agree with ab initio calculations employing the chiral NNLO_{sat} interaction, though skin thickness predictions are challenged. Shell model predictions agree well with the data.


Asunto(s)
Neutrones , Protones , Carbono
6.
Phys Rev Lett ; 124(22): 222504, 2020 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-32567915

RESUMEN

We report the measurement of reaction cross sections (σ_{R}^{ex}) of ^{27,29}F with a carbon target at RIKEN. The unexpectedly large σ_{R}^{ex} and derived matter radius identify ^{29}F as the heaviest two-neutron Borromean halo to date. The halo is attributed to neutrons occupying the 2p_{3/2} orbital, thereby vanishing the shell closure associated with the neutron number N=20. The results are explained by state-of-the-art shell model calculations. Coupled-cluster computations based on effective field theories of the strong nuclear force describe the matter radius of ^{27}F but are challenged for ^{29}F.

7.
Phys Rev Lett ; 124(10): 102501, 2020 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-32216444

RESUMEN

Interaction cross sections for ^{42-51}Ca on a carbon target at 280 MeV/nucleon have been measured for the first time. The neutron number dependence of derived root-mean-square matter radii shows a significant increase beyond the neutron magic number N=28. Furthermore, this enhancement of matter radii is much larger than that of the previously measured charge radii, indicating a novel growth in neutron skin thickness. A simple examination based on the Fermi-type distribution, and mean field calculations point out that this anomalous enhancement of the nuclear size beyond N=28 results from an enlargement of the core by a sudden increase in the surface diffuseness of the neutron density distribution, which implies the swelling of the bare ^{48}Ca core in Ca isotopes beyond N=28.

8.
Phys Rev Lett ; 123(21): 212501, 2019 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-31809143

RESUMEN

A search for the heaviest isotopes of fluorine, neon, and sodium was conducted by fragmentation of an intense ^{48}Ca beam at 345 MeV/nucleon with a 20-mm-thick beryllium target and identification of isotopes in the large-acceptance separator BigRIPS at the RIKEN Radioactive Isotope Beam Factory. No events were observed for ^{32,33}F, ^{35,36}Ne, and ^{38}Na and only one event for ^{39}Na after extensive running. Comparison with predicted yields excludes the existence of bound states of these unobserved isotopes with high confidence levels. The present work indicates that ^{31}F and ^{34}Ne are the heaviest bound isotopes of fluorine and neon, respectively. The neutron dripline has thus been experimentally confirmed up to neon for the first time since ^{24}O was confirmed to be the dripline nucleus nearly 20 years ago. These data provide new keys to understanding the nuclear stability at extremely neutron-rich conditions.

9.
Phys Rev Lett ; 123(9): 092502, 2019 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-31524489

RESUMEN

The most remote isotope from the proton dripline (by 4 atomic mass units) has been observed: ^{31}K. It is unbound with respect to three-proton (3p) emission, and its decays have been detected in flight by measuring the trajectories of all decay products using microstrip detectors. The 3p emission processes have been studied by the means of angular correlations of ^{28}S+3p and the respective decay vertices. The energies of the previously unknown ground and excited states of ^{31}K have been determined. This provides its 3p separation energy value S_{3p} of -4.6(2) MeV. Upper half-life limits of 10 ps of the observed ^{31}K states have been derived from distributions of the measured decay vertices.

10.
Phys Rev Lett ; 120(15): 152504, 2018 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-29756867

RESUMEN

The emission of neutron pairs from the neutron-rich N=12 isotones ^{18}C and ^{20}O has been studied by high-energy nucleon knockout from ^{19}N and ^{21}O secondary beams, populating unbound states of the two isotones up to 15 MeV above their two-neutron emission thresholds. The analysis of triple fragment-n-n correlations shows that the decay ^{19}N(-1p)^{18}C^{*}→^{16}C+n+n is clearly dominated by direct pair emission. The two-neutron correlation strength, the largest ever observed, suggests the predominance of a ^{14}C core surrounded by four valence neutrons arranged in strongly correlated pairs. On the other hand, a significant competition of a sequential branch is found in the decay ^{21}O(-1n)^{20}O^{*}→^{18}O+n+n, attributed to its formation through the knockout of a deeply bound neutron that breaks the ^{16}O core and reduces the number of pairs.

11.
Phys Rev Lett ; 120(15): 152505, 2018 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-29756883

RESUMEN

We observed the atomic 1s and 2p states of π^{-} bound to ^{121}Sn nuclei as distinct peak structures in the missing mass spectra of the ^{122}Sn(d,^{3}He) nuclear reaction. A very intense deuteron beam and a spectrometer with a large angular acceptance let us achieve a potential of discovery, which includes the capability of determining the angle-dependent cross sections with high statistics. The 2p state in a Sn nucleus was observed for the first time. The binding energies and widths of the pionic states are determined and found to be consistent with previous experimental results of other Sn isotopes. The spectrum is measured at finite reaction angles for the first time. The formation cross sections at the reaction angles between 0° and 2° are determined. The observed reaction-angle dependence of each state is reproduced by theoretical calculations. However, the quantitative comparison with our high-precision data reveals a significant discrepancy between the measured and calculated formation cross sections of the pionic 1s state.

12.
Nat Commun ; 9(1): 1594, 2018 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-29686394

RESUMEN

The nuclear shell structure, which originates in the nearly independent motion of nucleons in an average potential, provides an important guide for our understanding of nuclear structure and the underlying nuclear forces. Its most remarkable fingerprint is the existence of the so-called magic numbers of protons and neutrons associated with extra stability. Although the introduction of a phenomenological spin-orbit (SO) coupling force in 1949 helped in explaining the magic numbers, its origins are still open questions. Here, we present experimental evidence for the smallest SO-originated magic number (subshell closure) at the proton number six in 13-20C obtained from systematic analysis of point-proton distribution radii, electromagnetic transition rates and atomic masses of light nuclei. Performing ab initio calculations on 14,15C, we show that the observed proton distribution radii and subshell closure can be explained by the state-of-the-art nuclear theory with chiral nucleon-nucleon and three-nucleon forces, which are rooted in the quantum chromodynamics.

13.
Phys Rev Lett ; 120(5): 052501, 2018 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-29481189

RESUMEN

Quasifree one-proton knockout reactions have been employed in inverse kinematics for a systematic study of the structure of stable and exotic oxygen isotopes at the R^{3}B/LAND setup with incident beam energies in the range of 300-450 MeV/u. The oxygen isotopic chain offers a large variation of separation energies that allows for a quantitative understanding of single-particle strength with changing isospin asymmetry. Quasifree knockout reactions provide a complementary approach to intermediate-energy one-nucleon removal reactions. Inclusive cross sections for quasifree knockout reactions of the type ^{A}O(p,2p)^{A-1}N have been determined and compared to calculations based on the eikonal reaction theory. The reduction factors for the single-particle strength with respect to the independent-particle model were obtained and compared to state-of-the-art ab initio predictions. The results do not show any significant dependence on proton-neutron asymmetry.

14.
Phys Rev Lett ; 120(6): 062503, 2018 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-29481255

RESUMEN

A precision mass investigation of the neutron-rich titanium isotopes ^{51-55}Ti was performed at TRIUMF's Ion Trap for Atomic and Nuclear science (TITAN). The range of the measurements covers the N=32 shell closure, and the overall uncertainties of the ^{52-55}Ti mass values were significantly reduced. Our results conclusively establish the existence of the weak shell effect at N=32, narrowing down the abrupt onset of this shell closure. Our data were compared with state-of-the-art ab initio shell model calculations which, despite very successfully describing where the N=32 shell gap is strong, overpredict its strength and extent in titanium and heavier isotones. These measurements also represent the first scientific results of TITAN using the newly commissioned multiple-reflection time-of-flight mass spectrometer, substantiated by independent measurements from TITAN's Penning trap mass spectrometer.

15.
Phys Rev Lett ; 121(24): 242501, 2018 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-30608744

RESUMEN

The isospin character of p-n pairs at large relative momentum has been observed for the first time in the ^{16}O ground state. A strong population of the J,T=1,0 state and a very weak population of the J,T=0,1 state were observed in the neutron pickup domain of ^{16}O(p,pd) at 392 MeV. This strong isospin dependence at large momentum transfer is not reproduced by the distorted-wave impulse approximation calculations with known spectroscopic amplitudes. The results indicate the presence of high-momentum protons and neutrons induced by the tensor interactions in the ground state of ^{16}O.

16.
Phys Rev Lett ; 117(20): 202501, 2016 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-27886506

RESUMEN

Excitation spectra of ^{11}C are measured in the ^{12}C(p,d) reaction near the η^{'} emission threshold. A proton beam extracted from the synchrotron SIS-18 at GSI with an incident energy of 2.5 GeV impinges on a carbon target. The momenta of deuterons emitted at 0° are precisely measured with the fragment separator (FRS) operated as a spectrometer. In contrast to theoretical predictions on the possible existence of deeply bound η^{'}-mesic states in carbon nuclei, no distinct structures are observed associated with the formation of bound states. The spectra are analyzed to set stringent constraints on the formation cross section and on the hitherto barely known η^{'}-nucleus interaction.

17.
Phys Rev Lett ; 117(10): 102501, 2016 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-27636470

RESUMEN

Proton radii of ^{12-19}C densities derived from first accurate charge changing cross section measurements at 900A MeV with a carbon target are reported. A thick neutron surface evolves from ∼0.5 fm in ^{15}C to ∼1 fm in ^{19}C. The halo radius in ^{19}C is found to be 6.4±0.7 fm as large as ^{11}Li. Ab initio calculations based on chiral nucleon-nucleon and three-nucleon forces reproduce the radii well.

18.
Phys Rev Lett ; 117(1): 012501, 2016 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-27419564

RESUMEN

The ß-delayed neutron emission probabilities of neutron rich Hg and Tl nuclei have been measured together with ß-decay half-lives for 20 isotopes of Au, Hg, Tl, Pb, and Bi in the mass region N≳126. These are the heaviest species where neutron emission has been observed so far. These measurements provide key information to evaluate the performance of nuclear microscopic and phenomenological models in reproducing the high-energy part of the ß-decay strength distribution. This provides important constraints on global theoretical models currently used in r-process nucleosynthesis.

19.
Phys Rev Lett ; 115(20): 202501, 2015 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-26613434

RESUMEN

Previously unknown isotopes (30)Ar and (29)Cl have been identified by measurement of the trajectories of their in-flight decay products (28)S+p+p and (28)S+p, respectively. The analysis of angular correlations of the fragments provided information on decay energies and the structure of the parent states. The ground states of (30)Ar and (29)Cl were found at 2.25(-0.10)(+0.15) and 1.8±0.1 MeV above the two- and one-proton thresholds, respectively. The lowest states in (30)Ar and (29)Cl point to a violation of isobaric symmetry in the structure of these unbound nuclei. The two-proton decay has been identified in a transition region between simultaneous two-proton and sequential proton emissions from the (30)Ar ground state, which is characterized by an interplay of three-body and two-body decay mechanisms. The first hint of a fine structure of the two-proton decay of (30)Ar*(2(+)) has been obtained by detecting two decay branches into the ground and first-excited states of the (28)S fragment.

20.
Phys Rev Lett ; 113(13): 132501, 2014 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-25302882

RESUMEN

The first determination of radii of point proton distribution (proton radii) of (12-17)B from charge-changing cross sections (σ(CC)) measurements at the FRS, GSI, Darmstadt is reported. The proton radii are deduced from a finite-range Glauber model analysis of the σ(CC). The radii show an increase from ¹³B to ¹7B and are consistent with predictions from the antisymmetrized molecular dynamics model for the neutron-rich nuclei. The measurements show the existence of a thick neutron surface with neutron-proton radius difference of 0.51(0.11) fm in ¹7B.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA