RESUMEN
GM1 gangliosidosis is an inherited metabolic disease characterized by progressive neurological deterioration with premature death seen in children and numerous animals, including cats. We have observed that thymuses from affected cats greater than seven months of age (GM1 mutant cats) show marked thymic reduction compared to age-matched normal cats. The studies reported here were done to describe alterations in the thymus prior to (less then 90 days of age) and during the development of mild (90 to 210 days of age) to severe (greater than 210 days of age) progressive neurologic disease and to explore the pathogenesis of the thymic abnormality. Although histologic examination of the thymus from GM1 affected cats less than 210 days of age showed no significant differences from age-matched control cats, thymuses from GM1 mutant cats greater than 210 days of age were significantly reduced in size (approximately 3-fold). Histologic sections of lymph nodes, adrenal glands, and spleens from GM1 gangliosidosis-affected cats showed no significant differences. Flow cytometric analyses showed a marked decrease in the percentage of immature CD4+CD8+ thymocytes (p < 0.001) and significantly increased CD4-CD8+ cells (p < 0.01) in GM1 mutant cats greater than 210 days of age when compared to normal age matched cats. Co-labelling with CD4, CD8, and CD5 indicated an increase in the percentage of GM1 mutant cat thymocytes at this age which were CD5high, suggesting the presence of more mature cells. Cytometric analyses of subpopulations of peripheral lymphocytes indicated an increase in CD4-CD8+ cells (p < 0.05) with concurrent decreases in CD4+CD8- and CD4-CD8- cells (which were not significant). Similar analyses of thymocyte and lymphocyte subpopulations from cats < 210 days of age showed no significant differences between GM1 mutant and normal cells. GM1 mutant cats at all ages had increased surface binding of Cholera toxin B on thymocytes, indicating increased surface GM1 ganglioside expression. Increases were highly significant in GM1 mutant cats greater than 210 days of age. In situ labelling for apoptosis was increased in GM1 mutant cats between 90 to 200 days of age when thymic masses were within normal limits. In GM1 mutant cats over 200 days of age, decreased labelling was observed when thymic mass was reduced and the CD4+CD8+ subpopulation, known to be very susceptible to apoptosis, was significantly decreased. These data describe premature thymic involution in feline GM1 gangliosidosis and suggest that increased surface GM1 gangliosides alters thymocyte development in these cats.