Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cells ; 13(11)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38891121

RESUMEN

Hypertension induces cardiac fibrotic remodelling characterised by the phenotypic switching of cardiac fibroblasts (CFs) and collagen deposition. We tested the hypothesis that Wnt1-inducible signalling pathway protein-1 (WISP-1) promotes CFs' phenotypic switch, type I collagen synthesis, and in vivo fibrotic remodelling. The treatment of human CFs (HCFs, n = 16) with WISP-1 (500 ng/mL) induced a phenotypic switch (α-smooth muscle actin-positive) and type I procollagen cleavage to an intermediate form of collagen (pC-collagen) in conditioned media after 24h, facilitating collagen maturation. WISP-1-induced collagen processing was mediated by Akt phosphorylation via integrin ß1, and disintegrin and metalloproteinase with thrombospondin motifs 2 (ADAMTS-2). WISP-1 wild-type (WISP-1+/+) mice and WISP-1 knockout (WISP-1-/-) mice (n = 5-7) were subcutaneously infused with angiotensin II (AngII, 1000 ng/kg/min) for 28 days. Immunohistochemistry revealed the deletion of WISP-1 attenuated type I collagen deposition in the coronary artery perivascular area compared to WISP-1+/+ mice after a 28-day AngII infusion, and therefore, the deletion of WISP-1 attenuated AngII-induced cardiac fibrosis in vivo. Collectively, our findings demonstrated WISP-1 is a critical mediator in cardiac fibrotic remodelling, by promoting CFs' activation via the integrin ß1-Akt signalling pathway, and induced collagen processing and maturation via ADAMTS-2. Thereby, the modulation of WISP-1 levels could provide potential therapeutic targets in clinical treatment.


Asunto(s)
Proteínas CCN de Señalización Intercelular , Fibroblastos , Fibrosis , Miocardio , Proteínas Proto-Oncogénicas , Animales , Proteínas CCN de Señalización Intercelular/metabolismo , Proteínas CCN de Señalización Intercelular/genética , Fibroblastos/metabolismo , Fibroblastos/patología , Fibroblastos/efectos de los fármacos , Humanos , Ratones , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Miocardio/patología , Miocardio/metabolismo , Colágeno/metabolismo , Angiotensina II/farmacología , Ratones Noqueados , Colágeno Tipo I/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Masculino , Transducción de Señal/efectos de los fármacos , Ratones Endogámicos C57BL
2.
Int J Mol Sci ; 25(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38891996

RESUMEN

Human abdominal aortic aneurysms (AAAs) are characterized by increased activity of matrix metalloproteinases (MMP), including MMP-12, alongside macrophage accumulation and elastin degradation, in conjunction with superimposed atherosclerosis. Previous genetic ablation studies have proposed contradictory roles for MMP-12 in AAA development. In this study, we aimed to elucidate if pharmacological inhibition of MMP-12 activity with a phosphinic peptide inhibitor protects from AAA formation and progression in angiotensin (Ang) II-infused Apoe-/- mice. Complimentary studies were conducted in a human ex vivo model of early aneurysm development. Administration of an MMP-12 inhibitor (RXP470.1) protected hypercholesterolemia Apoe-/- mice from Ang II-induced AAA formation and rupture-related death, associated with diminished medial thinning and elastin fragmentation alongside increased collagen deposition. Proteomic analyses confirmed a beneficial effect of MMP-12 inhibition on extracellular matrix remodeling proteins combined with inflammatory pathways. Furthermore, RXP470.1 treatment of mice with pre-existing AAAs exerted beneficial effects as observed through suppressed aortic dilation and rupture, medial thinning, and elastin destruction. Our findings indicate that pharmacological inhibition of MMP-12 activity retards AAA progression and improves survival in mice providing proof-of-concept evidence to motivate translational work for MMP-12 inhibitor therapy in humans.


Asunto(s)
Angiotensina II , Aneurisma de la Aorta Abdominal , Apolipoproteínas E , Metaloproteinasa 12 de la Matriz , Inhibidores de la Metaloproteinasa de la Matriz , Animales , Aneurisma de la Aorta Abdominal/metabolismo , Aneurisma de la Aorta Abdominal/patología , Aneurisma de la Aorta Abdominal/inducido químicamente , Aneurisma de la Aorta Abdominal/prevención & control , Aneurisma de la Aorta Abdominal/etiología , Metaloproteinasa 12 de la Matriz/metabolismo , Ratones , Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Humanos , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Inhibidores de la Metaloproteinasa de la Matriz/uso terapéutico , Masculino , Modelos Animales de Enfermedad , Ratones Noqueados , Ratones Endogámicos C57BL , Elastina/metabolismo , Proteómica/métodos
3.
Cells ; 12(22)2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37998362

RESUMEN

BACKGROUND: Osteopontin has been implicated in vascular calcification formation and vein graft intimal hyperplasia, and its expression can be triggered by pro-inflammatory activation of cells. The role of osteopontin and the temporal formation of microcalcification in vein grafts is poorly understood with a lack of understanding of the interaction between haemodynamic changes and the activation of osteopontin. METHODS: We used a porcine model of vein interposition grafts, and human long saphenous veins exposed to ex vivo perfusion, to study the activation of osteopontin using polymerase chain reaction, immunostaining, and 18F-sodium fluoride autoradiography. RESULTS: The porcine model showed that osteopontin is active in grafts within 1 week following surgery and demonstrated the presence of microcalcification. A brief pretreatment of long saphenous veins with dexamethasone can suppress osteopontin activation. Prolonged culture of veins after exposure to acute arterial haemodynamics resulted in the formation of microcalcification but this was suppressed by pretreatment with dexamethasone. 18F-sodium fluoride uptake was significantly increased as early as 1 week in both models, and the pretreatment of long saphenous veins with dexamethasone was able to abolish its uptake. CONCLUSIONS: Osteopontin is activated in vein grafts and is associated with microcalcification formation. A brief pretreatment of veins ex vivo with dexamethasone can suppress its activation and associated microcalcification.


Asunto(s)
Calcinosis , Osteopontina , Humanos , Porcinos , Animales , Osteopontina/metabolismo , Fluoruro de Sodio , Vena Safena/trasplante , Dexametasona/farmacología , Calcinosis/metabolismo
4.
Cells ; 12(5)2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36899951

RESUMEN

The long saphenous vein is the most used conduit in cardiac surgery, but its long-term patency is limited by vein graft disease (VGD). Endothelial dysfunction is a key driver of VGD; its aetiology is multi-factorial. However emerging evidence identifies vein conduit harvest technique and preservation fluids as causal in their onset and propagation. This study aims to comprehensively review published data on the relationship between preservation solutions, endothelial cell integrity and function, and VGD in human saphenous veins harvested for CABG. The review was registered with PROSPERO (CRD42022358828). Electronic searches of Cochrane Central Register of Controlled Trials, MEDLINE, and EMBASE databases were undertaken from inception until August 2022. Papers were evaluated in line with registered inclusion and exclusion criteria. Searches identified 13 prospective, controlled studies for inclusion in the analysis. All studies used saline as a control solution. Intervention solutions included heparinised whole blood and saline, DuraGraft, TiProtec, EuroCollins, University of Wisconsin (UoW), buffered, cardioplegic and Pyruvate solutions. Most studies demonstrated that normal saline appears to have negative effects on venous endothelium and the most effective preservation solutions identified in this review were TiProtec and DuraGraft. The most used preservation solutions in the UK are heparinised saline or autologous whole blood. There is substantial heterogeneity both in practice and reporting of trials evaluating vein graft preservation solutions, and the quality of existing evidence is low. There is an unmet need for high quality trials evaluating the potential for these interventions to improve long-term patency in venous bypass grafts.


Asunto(s)
Soluciones Preservantes de Órganos , Enfermedades Vasculares , Humanos , Vena Safena/trasplante , Estudios Prospectivos , Endotelio Vascular , Reino Unido
5.
J Cell Sci ; 136(6)2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36846872

RESUMEN

Multidirectional or disturbed flow promotes endothelial dysfunction and is associated with early atherogenesis. Here we investigated the role of Wnt signalling in flow-mediated endothelial dysfunction. The expression of Frizzled-4 was higher in cultured human aortic endothelial cells (ECs) exposed to disturbed flow compared to that seen for undisturbed flow, obtained using an orbital shaker. Increased expression was also detected in regions of the porcine aortic arch exposed to disturbed flow. The increased Frizzled-4 expression in cultured ECs was abrogated following knockdown of R-spondin-3. Disturbed flow also increased the nuclear localisation and activation of ß-catenin, an effect that was dependent on Frizzled-4 and R-spondin-3. Inhibition of ß-catenin using the small-molecule inhibitor iCRT5 or knockdown of Frizzled-4 or R-spondin-3 resulted in reduced expression of pro-inflammatory genes in ECs exposed to disturbed flow, as did inhibition of WNT5A signalling. Inhibition of the canonical Wnt pathway had no effect. Inhibition of ß-catenin also reduced endothelial paracellular permeability; this was associated with altered junctional and focal adhesion organisation and cytoskeletal remodelling. These data suggest the presence of an atypical Frizzled-4-ß-catenin pathway that promotes endothelial dysfunction in response to disturbed flow.


Asunto(s)
Células Endoteliales , beta Catenina , Animales , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Células Endoteliales/metabolismo , Inflamación/metabolismo , Permeabilidad , Porcinos , Vía de Señalización Wnt , Receptores Frizzled/metabolismo
6.
Arterioscler Thromb Vasc Biol ; 43(3): 456-473, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36700427

RESUMEN

BACKGROUND: Late vein graft failure is caused by intimal thickening resulting from endothelial cell (EC) damage and inflammation which promotes vascular smooth muscle cell (VSMC) dedifferentiation, migration, and proliferation. Nonphosphorylatable PRH (proline-rich homeodomain) S163C:S177C offers enhanced stability and sustained antimitotic effect. Therefore, we investigated whether adenovirus-delivered PRH S163C:S177C protein attenuates intimal thickening via VSMC phenotype modification without detrimental effects on ECs. METHODS: PRH S163C:S177C was expressed in vitro (human saphenous vein-VSMCs and human saphenous vein-ECs) and in vivo (ligated mouse carotid arteries) by adenoviruses. Proliferation, migration, and apoptosis were quantified and phenotype was assessed using Western blotting for contractile filament proteins and collagen gel contraction. EC inflammation was quantified using VCAM (vascular cell adhesion protein)-1, ICAM (intercellular adhesion molecule)-1, interleukin-6, and monocyte chemotactic factor-1 measurement and monocyte adhesion. Next Generation Sequencing was utilized to identify novel downstream mediators of PRH action and these and intimal thickening were investigated in vivo. RESULTS: PRH S163C:S177C inhibited proliferation, migration, and apoptosis and promoted contractile phenotype (enhanced contractile filament proteins and collagen gel contraction) compared with virus control in human saphenous vein-VSMCs. PRH S163C:S177C expression in human saphenous vein-ECs significantly reduced apoptosis, without affecting cell proliferation and migration, while reducing TNF (tumor necrosis factor)-α-induced VCAM-1 and ICAM-1 and monocyte adhesion and suppressing interleukin-6 and monocyte chemotactic factor-1 protein levels. PRH S163C:S177C expression in ligated murine carotid arteries significantly impaired carotid artery ligation-induced neointimal proliferation and thickening without reducing endothelial coverage. Next Generation Sequencing revealed STAT-1 (signal transducer and activator of transcription 1) and HDAC-9 (histone deacetylase 9) as mediators of PRH action and was supported by in vitro and in vivo analyses. CONCLUSIONS: We observed PRH S163C:S177C attenuated VSMC proliferation, and migration and enhanced VSMC differentiation at least in part via STAT-1 and HDAC-9 signaling while promoting endothelial repair and anti-inflammatory properties. These findings highlight the potential for PRH S163C:S177C to preserve endothelial function whilst suppressing intimal thickening, and reducing late vein graft failure.


Asunto(s)
Interleucina-6 , Túnica Íntima , Ratones , Animales , Humanos , Interleucina-6/metabolismo , Túnica Íntima/patología , Proliferación Celular , Neointima/patología , Factores Quimiotácticos/metabolismo , Factores Quimiotácticos/farmacología , Miocitos del Músculo Liso/metabolismo , Movimiento Celular
7.
Perfusion ; 38(5): 894-930, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-35624557

RESUMEN

Coronary artery bypass grafting remains the treatment of choice for a large cohort of patients with significant coronary disease. Despite the increased use of arterial grafts, the long saphenous vein remains the most commonly used conduit. Long-term graft patency continues to be the Achilles heel of saphenous vein grafts. This is due to the development of intimal hyperplasia, a chronic inflammatory disease that results in the narrowing and occlusion of a significant number of vein grafts. Research models for intimal hyperplasia are essential for a better understanding of pathophysiological processes of this condition. Large animal models resemble human anatomical structures and have been used as a surrogate to study disease development and prevention over the years. In this paper, we systematically review all published studies that utilized large animal models of vein graft disease with a focus on the type of model and any therapeutic intervention, specifically the use of external stents/mesh.


Asunto(s)
Puente de Arteria Coronaria , Oclusión de Injerto Vascular , Animales , Humanos , Grado de Desobstrucción Vascular/fisiología , Hiperplasia/patología , Puente de Arteria Coronaria/métodos , Vena Safena/cirugía , Modelos Animales
8.
Front Cardiovasc Med ; 9: 849675, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35419441

RESUMEN

Background and Aims: Atherosclerosis is a chronic inflammatory disease that remains the leading cause of morbidity and mortality worldwide. Despite decades of research into the development and progression of this disease, current management and treatment approaches remain unsatisfactory and further studies are required to understand the exact pathophysiology. This review aims to provide a comprehensive assessment of currently published data utilizing single-cell and next-generation sequencing techniques to identify key cellular and molecular contributions to atherosclerosis and vascular inflammation. Methods: Electronic searches of Cochrane Central Register of Controlled Trials, MEDLINE, and EMBASE databases were undertaken from inception until February 2022. A narrative synthesis of all included studies was performed for all included studies. Quality assessment and risk of bias analysis was evaluated using the ARRIVE and SYRCLE checklist tools. Results: Thirty-four studies were eligible for narrative synthesis, with 16 articles utilizing single-cell exclusively, 10 utilizing next-generation sequencing and 8 using a combination of these approaches. Studies investigated numerous targets, ranging from exploratory tissue and plaque analysis, cell phenotype investigation and physiological/hemodynamic contributions to disease progression at both the single-cell and whole genome level. A significant area of focus was placed on smooth muscle cell, macrophage, and stem/progenitor contributions to disease, with little focus placed on contributions of other cell types including lymphocytes and endothelial cells. A significant level of heterogeneity exists in the outcomes from single-cell sequencing of similar samples, leading to inter-sample and inter-study variation. Conclusions: Single-cell and next-generation sequencing methodologies offer novel means of elucidating atherosclerosis with significantly higher resolution than previous methodologies. These approaches also show significant potential for translatability into other vascular disease states, by facilitating cell-specific gene expression profiles between disease states. Implementation of these technologies may offer novel approaches to understanding the disease pathophysiology and improving disease prevention, management, and treatment.Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021229960, identifier: CRD42021229960.

9.
Int J Cardiol ; 359: 20-27, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35429509

RESUMEN

BACKGROUND: Hybrid coronary revascularization (HCR) combines the benefits of a left internal mammary artery to left anterior descending artery anastomosis, via a mini thoracotomy, with percutaneous coronary intervention (PCI) for other diseased coronaries. AIMS: The aim of this meta-analysis is to compare the short- and long-term outcomes of HCR with those of coronary artery bypass grafting (CABG) for multi-vessel coronary artery disease (MCAD). METHODS: We performed a meta-analysis with a primary outcome of short-term mortality and secondary outcomes of mid-term survival, length of hospital stay, stroke, renal failure and mid-term MACE rate. RESULTS: 3399 patients (HCR = 1164, CABG = 2235) were included, with no significant difference in short-term mortality between groups (OR = 1.50, 95% CI = [0.90,2.49], p = 0.11), although a higher mortality rate was seen in the HCR group (0.73% vs 0.64%). The average length of stay in intensive care unit was significantly shorter following HCR than CABG (mean difference = -15.52 h, CI = [-22.47,-8.59], p˂0.001) and overall hospital stay was also shorter in this group, although not statistically significant (mean difference = -3.15 days, 95% CI = [-6.55, 0.25], p = 0.07). HCR was associated with a reduced odds of blood transfusion (OR = 0.34, 95% CI = [0.22,0.54], p < 0.001). There was not a significant difference in mid-term survival (OR = 0.86, 95% CI = [0.62,1.21], p = 0.39) or MACE rate (OR = 0.82, 95% CI = [0.55,1.23], p = 0.34). No differences were found between HCR and CABG for post-operative stroke (OR = 1.36, 95% CI = [0.87, 2.13], p = 0.16) or renal failure (OR = 0.71, 95% CI = [0.43,1.16], p = 0.14). CONCLUSIONS: HCR has a higher incidence of short-term mortality compared to CABG in patients with MCAD, although this difference is not statistically significant. Similar rates of mid-term survival and other short term post-operative complications were found between the two groups. HCR has a shorter ICU stays and reduced requirement for blood transfusion.


Asunto(s)
Enfermedad de la Arteria Coronaria , Intervención Coronaria Percutánea , Insuficiencia Renal , Accidente Cerebrovascular , Puente de Arteria Coronaria , Enfermedad de la Arteria Coronaria/diagnóstico , Enfermedad de la Arteria Coronaria/cirugía , Humanos , Resultado del Tratamiento
10.
Methods Mol Biol ; 2419: 133-167, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35237963

RESUMEN

Bromodeoxyuridine/5-bromo-2'-deoxyuridine (BrdU) is a nucleoside analog of thymidine and its incorporation into DNA during replication within S-phase of the cell cycle is used to quantify cell proliferation. Quantification of incorporated BrdU is considered the most direct measure of cell proliferation, and here we describe BrdU incorporation into cultured vascular smooth muscle cells (VSMCs) and endothelial cells in vitro. Incorporation of fluorescent-labeled ethynyldeoxyuridine/5-ethynyl-2'-deoxyuridine (EdU) is a novel alternative to BrdU assays and presents significant advantages. This method of detection of EdU based on a simple "click" chemical reaction, which covalently bonds EdU to a fluorescent dye is also outlined in this chapter with a protocol for quantitative analysis of EdU incorporation using a Fiji-based macro. We also describe how proliferation can be assessed by quantification of classical proliferative markers such as phopsho-Ser807/811 retinoblastoma (Rb), proliferating cell nuclear antigen (PCNA) and cyclin D1 by Western blotting. As these markers are involved in different aspects of the cell cycle regulation, examining their expression levels can not only reveal the relative population of proliferating cells but can also improve our understanding of the mechanism of action of a given treatment or intervention. The scratch wound assay is a simple and cost-effective technique to quantify cell migration. A protocol which involves creating a wound in a cell cultured monolayer and measuring the distance migrated by the cells after a predefined time period is also described. Gap creation can also be achieved via physical cell exclusion where cells are seeded in distinct reservoirs of a cell culture insert which reveal a gap upon removal. Cell migration may then be quantified by monitoring the rate of gap closure. The presence of cleaved caspase-3 is a marker of programmed cell death (apoptosis). To detect cleaved caspase-3 in vitro, immunocytochemistry and fluorescence can be performed as outlined in this chapter.


Asunto(s)
Aterosclerosis , Desoxiuridina , Apoptosis , Bromodesoxiuridina/metabolismo , Proliferación Celular , Células Endoteliales/metabolismo , Humanos
11.
Methods Mol Biol ; 2419: 507-519, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35237985

RESUMEN

Immunohistochemistry for specific proteins characteristic of proliferative or apoptotic cells allows for monitoring of these cell behaviors in biological tissues samples, including atherosclerotic plaques and intimal thickenings. Proliferating cell nuclear antigen (PCNA) and Ki-67 are widely used markers of cell proliferation and cleaved caspase-3 is a well-established marker of apoptosis that can be detected in tissue samples using immunohistochemistry. This technique enables quantification of the abundance of these proteins and provides information on the distribution of these biomarkers in tissues. By combining with immunohistochemistry for specific cell type markers, it is also possible to determine which cell types are proliferating or undergoing apoptosis. Here, we detail protocols for immunohistochemistry of PCNA, Ki-67, and cleaved caspase-3 for evaluation of cellular proliferation and apoptosis in atherosclerotic plaques in vivo. In addition, we outline methods for the quantification and localization of cell proliferation using bromodeoxyuridine/5-bromo-2'-deoxyuridine (BrdU) and ethynyldeoxyuridine/5-ethynyl-2 ́-deoxyuridine(EdU) labeled tissue samples collected from animals exposed to BrdU or EdU.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Animales , Apoptosis , Bromodesoxiuridina/metabolismo , División Celular , Proliferación Celular , Antígeno Ki-67/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo
12.
Methods Mol Biol ; 2419: 521-535, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35237986

RESUMEN

Histochemical and immunohistochemical approaches permit the detection and evaluation of proteins and cell types within murine brachiocephalic artery atherosclerotic plaques, that can be subsequently analyzed to provide inferences on atherosclerotic plaque vulnerability. Here we describe the specific histochemical techniques deployed to examine the expression of elastin, fibrillar collagens, and neutral lipids, alongside immunohistochemistry protocols for the identification of macrophages (CD68) and vascular smooth muscle cells (α-smooth muscle actin). We will also describe how analyses derived from these methods can be combined to determine evidence of previous plaque rupture and susceptibility to rupture.


Asunto(s)
Placa Aterosclerótica , Animales , Inmunohistoquímica , Macrófagos/metabolismo , Ratones , Miocitos del Músculo Liso/metabolismo , Placa Aterosclerótica/metabolismo
13.
Methods Mol Biol ; 2419: 537-560, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35237987

RESUMEN

The thickening of the intima is a critical underlying component of atherosclerosis. Consequently, robust and reproducible animal models of intimal thickening are essential for a greater understanding of the mechanisms underlying the process of intimal thickening and to evaluate new approaches for the reduction of intimal thickening and thereby atherosclerosis. The ligation of the carotid artery in the mouse causes the thickening of the intimal layer of the artery. This model is relatively simple and is reproducible and therefore is a preferred and well-established model of intimal thickening. Here, we detail a protocol for carotid artery ligation in the mouse and methods for histological examination and quantification of intimal thickening.


Asunto(s)
Aterosclerosis , Músculo Liso Vascular , Animales , Aterosclerosis/patología , Arterias Carótidas/patología , Arterias Carótidas/cirugía , Modelos Animales de Enfermedad , Ratones , Músculo Liso Vascular/fisiología , Miocitos del Músculo Liso/patología
14.
Front Cardiovasc Med ; 9: 1059124, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36794234

RESUMEN

Background: Endothelial dysfunction is a critical component of both atherosclerotic plaque formation and saphenous vein graft failure. Crosstalk between the pro-inflammatory TNF-α-NFκB signaling axis and the canonical Wnt/ß-catenin signaling pathway potentially plays an important role in regulating endothelial dysfunction, though the exact nature of this is not defined. Results: In this study, cultured endothelial cells were challenged with TNF-α and the potential of a Wnt/ß-catenin signaling inhibitor, iCRT-14, in reversing the adverse effects of TNF-α on endothelial physiology was evaluated. Treatment with iCRT-14 lowered nuclear and total NFκB protein levels, as well as expression of NFκB target genes, IL-8 and MCP-1. Inhibition of ß-catenin activity with iCRT-14 suppressed TNF-α-induced monocyte adhesion and decreased VCAM-1 protein levels. Treatment with iCRT-14 also restored endothelial barrier function and increased levels of ZO-1 and focal adhesion-associated phospho-paxillin (Tyr118). Interestingly, inhibition of ß-catenin with iCRT-14 enhanced platelet adhesion in cultured TNF-α-stimulated endothelial cells and in an ex vivo human saphenous vein model, most likely via elevating levels of membrane-tethered vWF. Wound healing was moderately retarded by iCRT-14; hence, inhibition of Wnt/ß-catenin signaling may interfere with re-endothelialisation in grafted saphenous vein conduits. Conclusion: Inhibition of the Wnt/ß-catenin signaling pathway with iCRT-14 significantly recovered normal endothelial function by decreasing inflammatory cytokine production, monocyte adhesion and endothelial permeability. However, treatment of cultured endothelial cells with iCRT-14 also exerted a pro-coagulatory and moderate anti-wound healing effect: these factors may affect the suitability of Wnt/ß-catenin inhibition as a therapy for atherosclerosis and vein graft failure.

15.
Perfusion ; 37(6): 582-589, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-33899586

RESUMEN

Vascular endothelial cell stimulation is associated with the activation of different signalling pathways and transcription factors. Acute shear stress is known to induce different pro-inflammatory mediators such as IL-8. Nrf2 is activated by prolonged high shear stress promoting an antiinflammatory and athero-protective environment. However, little is known about the impact of acute shear stress on Nrf2 and Keap1 function and its role in IL-8 regulation. We aimed to examine Nrf2-Keap1 complex activation in-vitro and its role in regulating IL-8 transcripts under acute arterial shear stress (12 dyn/cm2) in venous endothelial cells (ECs). We note that acute high shear stress caused a significant upregulation of Nrf2 target genes, HO-1 and GCLM and an increased IL-8 upregulation at 90 and 120 minutes. Mechanistically, acute high shear did not affect Nrf2 nuclear translocation but resulted in reduced nuclear Keap1, suggesting that the reduction in nuclear Keap1 may result in increased free nuclear nrf2 to induce transcription. Consistently, the suppression of Keap1 using shRNA (shKeap1) resulted in significant upregulation of IL-8 transcripts in response to acute shear stress. Interestingly; the over expression of Nrf2 using Nrf2-Ad-WT or Sulforaphane was also associated with significant upregulation of IL-8 compared to controls. This study highlights the role of Keap1 in Nrf2 activation under shear stress and indicates that activation of Nrf2 may be deleterious in ECs in the context of acute haemodynamic injury.


Asunto(s)
Células Endoteliales , Factor 2 Relacionado con NF-E2 , Células Endoteliales/metabolismo , Humanos , Interleucina-8/genética , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/fisiología , Estrés Mecánico
16.
J Cell Commun Signal ; 15(3): 421-432, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34080128

RESUMEN

Patients with abdominal aortic aneurysms are frequently treated with high-risk surgery. A pharmaceutical treatment to reverse aneurysm progression could prevent the need for surgery and save both lives and healthcare resources. Since CCN4 regulates cell migration, proliferation and apoptosis, processes involved in aneurysm progression, it is a potential regulator of aneurysm progression. We investigated the role of CCN4 in a mouse aneurysm model, using apolipoprotein-E knockout (ApoE-/-) mice fed high fat diet and infused with Angiotensin II (AngII). Blood pressure was similarly elevated in CCN4-/-ApoE-/- mice and CCN4+/+ApoE-/- mice (controls) in response to AngII infusion. Deletion of CCN4 significantly reduced the number of ruptured aortae, both thoracic and abdominal aortic area, and aneurysm grade score, compared to controls. Additionally, the frequency of vessel wall remodelling and the number of elastic lamina breaks was significantly suppressed in CCN4-/-ApoE-/- mice compared to controls. Immunohistochemistry revealed a significantly lower proportion of macrophages, while the proportion of smooth muscle cells was not affected by the deletion of CCN4. There was also a reduction in both proliferation and apoptosis in CCN4-/-ApoE-/- mice compared to controls. In vitro studies showed that CCN4 significantly increased monocyte adhesion beyond that seen with TNFα and stimulated macrophage migration by more than threefold. In summary, absence of CCN4 reduced aneurysm severity and improved aortic integrity, which may be the result of reduced macrophage infiltration and cell apoptosis. Inhibition of CCN4 could offer a potential therapeutic approach for the treatment of aneurysms.

17.
J Tissue Eng ; 12: 2041731420987529, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33854749

RESUMEN

Human saphenous vein (hSV) and synthetic grafts are commonly used conduits in vascular grafting, despite high failure rates. Decellularising hSVs (D-hSVs) to produce vascular scaffolds might be an effective alternative. We assessed the effectiveness of a detergent-based method using 0% to 1% sodium dodecyl sulphate (SDS) to decellularise hSV. Decellularisation effectiveness was measured in vitro by nuclear counting, DNA content, residual cell viability, extracellular matrix integrity and mechanical strength. Cytotoxicity was assessed on human and porcine cells. The most effective SDS concentration was used to prepare D-hSV grafts that underwent preliminary in vivo testing using a porcine carotid artery replacement model. Effective decellularisation was achieved with 0.01% SDS, and D-hSVs were biocompatible after seeding. In vivo xeno-transplantation confirmed excellent mechanical strength and biocompatibility with recruitment of host cells without mechanical failure, and a 50% patency rate at 4-weeks. We have developed a simple biocompatible methodology to effectively decellularise hSVs. This could enhance vascular tissue engineering toward future clinical applications.

18.
Ann Thorac Surg ; 112(6): 2094-2103, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33340520

RESUMEN

BACKGROUND: Suitable autologous conduits may be lacking when performing coronary artery bypass grafting. The aim of this review is to determine the status of nonautologous grafts in coronary artery bypass grafting. METHODS: We conducted a literature search on MEDLINE All, Embase Classic, and Embase through Ovid from 1960 to April 2020. RESULTS: Of the 1579 records identified, 21 studies were included in the review. The following grafts were assessed for patency: 109 homologous saphenous veins (patency rates ranged from 66.7% at a median follow-up of 8.5 months to 0% at 6-12 months and 7-18 months, respectively), 29 expanded polytetrafluoroethylene grafts (from 80% at a median follow-up of 5 months to 14.3% at 45 months), 12 human umbilical veins (50% at a median follow-up of 6 months), 50 Bioflow bovine internal mammary arteries (from 15.8% to 0% at a mean follow-up of 9.5 months and 19 months, respectively), 39 Perma-Flow grafts (80% and 76.9% at 1-3 months and 12 months, respectively), 20 No-React bovine internal mammary arteries (57.1% at a median follow-up of 28 months and 23.1% at a mean follow-up of 7 months), 40 autologous venous endothelial cell-seeded expanded polytetrafluoroethylene grafts (94.7% and 81% at a mean follow-up of 27 months and 60 months, respectively), and 12 autologous venous endothelial cell-seeded cryopreserved homologous veins (83.3% at a mean follow-up of 8.5 months). CONCLUSIONS: The goal of an alternative conduit with patency and attributes that match those of autografts remains elusive. Autologous endothelial cell-seeded synthetic grafts have demonstrated promising results but require further investigation.


Asunto(s)
Prótesis Vascular , Puente de Arteria Coronaria/métodos , Arterias Mamarias/trasplante , Vena Safena/trasplante , Grado de Desobstrucción Vascular/fisiología , Criopreservación , Humanos , Arterias Mamarias/fisiopatología , Vena Safena/fisiopatología
19.
STAR Protoc ; 1(3): 100108, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33377004

RESUMEN

Aortic aneurysm rupture is a significant cause of premature mortality worldwide. Although animal models exist, some frequently experience aortic rupture and sudden death. An alternative approach is therefore required that would use human material to aid translation. Accordingly, we present an optimized and validated protocol to isolate human umbilical cord arteries and their subsequent deployment within a bioreactor. Consequently, this reproducible ex vivo human model of aneurysm can be used for pathogenesis studies and accompanying assessment of potential novel therapeutics.


Asunto(s)
Aneurisma/fisiopatología , Cultivo Primario de Células/métodos , Arterias Umbilicales/crecimiento & desarrollo , Aneurisma/metabolismo , Aneurisma de la Aorta Abdominal/complicaciones , Rotura de la Aorta/complicaciones , Reactores Biológicos , Humanos , Modelos Biológicos
20.
Sci Rep ; 10(1): 15133, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32934266

RESUMEN

The long saphenous vein (LSV) is commonly used as a conduit in coronary artery bypass grafting. However, long term patency remains limited by the development of vascular inflammation, intimal hyperplasia and accelerated atherosclerosis. The impact of acute exposure of venous endothelial cells (ECs) to acute arterial wall shear stress (WSS) in the arterial circulation, and the subsequent activation of inflammatory pathways, remain poorly defined. Here, we tested the hypothesis that acute exposure of venous ECs to high shear stress is associated with inflammatory responses that are regulated by NF-κB both in-vitro and ex-vivo. Analysis of the LSV endothelium revealed that activation of NF-κB occurred within 30 min after exposure to arterial rates of shear stress. Activation of NF-κB was associated with increased levels of CCL2 production and enhanced binding of monocytes in LSVECs exposed to 6 h acute arterial WSS. Consistent with this, ex vivo exposure of LSVs to acute arterial WSS promoted monocyte interactions with the vessel lumen. Inhibition of the NF-κB pathway prevented acute arterial WSS-induced CCL2 production and reduced monocyte adhesion, both in vitro and in human LSV ex vivo, demonstrating that this pathway is necessary for the induction of the acute arterial WSS-induced pro-inflammatory response. We have identified NF-κB as a critical regulator of acute endothelial inflammation in saphenous vein in response to acute arterial WSS. Localised endothelial-specific inhibition of the NF-κB pathway may be beneficial to prevent vein graft inflammation and consequent failure.


Asunto(s)
Endotelio Vascular/efectos de los fármacos , Inflamación/prevención & control , Monocitos/efectos de los fármacos , FN-kappa B/antagonistas & inhibidores , Nitrilos/farmacología , Vena Safena/efectos de los fármacos , Estrés Mecánico , Sulfonas/farmacología , Células Cultivadas , Puente de Arteria Coronaria , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Endotelio Vascular/cirugía , Humanos , Inflamación/etiología , Inflamación/metabolismo , Inflamación/patología , Monocitos/metabolismo , Monocitos/patología , Vena Safena/metabolismo , Vena Safena/patología , Vena Safena/cirugía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA